首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sergeeva E  Liaimer A  Bergman B 《Planta》2002,215(2):229-238
The ability of cyanobacteria to produce the phytohormone indole-3-acetic acid (IAA) was demonstrated. A colorimetric (Salkowski) screening of 34 free-living and symbiotically competent cyanobacteria, that represent all morphotypes from the unicellular to the highly differentiated, showed that auxin-like compounds were released by about 38% of the free-living as compared to 83% of the symbiotic isolates. The endogenous accumulation and release of IAA were confirmed immunologically (ELISA) using an anti-IAA antibody on 10 of the Salkowski-positive strains, and the chemical authenticity of IAA was further verified by chemical characterization using gas chromatography-mass spectrometry in Nostoc PCC 9229 (isolated from the angiosperm Gunnera) and in Nostoc 268 (free-living). Addition of the putative IAA precursor tryptophan enhanced IAA accumulation in cell extracts and supernatants. As the genome of the symbiotically competent Nostoc PCC 73102 contains homologues of key enzymes of the indole-3-pyruvic acid pathway, a transaminase and indolepyruvate decarboxylase (IpdC), the putative ipdC gene from this cyanobacterium was cloned and used in Southern blot analysis. Out of 11 cyanobacterial strains responding positively in the Salkowski/ELISA test, ipdC homologues were found in 4. A constitutive and possibly tryptophan-dependent production of IAA via the indole-3-pyruvic acid pathway is therefore suggested. The possible role of IAA in cyanobacteria in general and in their interactions with plants is discussed.  相似文献   

2.
3.
The indole-3-pyruvate decarboxylase gene (ipdC), coding for a key enzyme of the indole-3-pyruvic acid pathway of IAA biosynthesis in Azospirillum brasilense SM was functionally disrupted in a site-specific manner. This disruption was brought about by group II intron-based Targetron gene knock-out system as other conventional methods were unsuccessful in generating an IAA-attenuated mutant. Intron insertion was targeted to position 568 on the sense strand of ipdC, resulting in the knock-out strain, SMIT568s10 which showed a significant (∼50%) decrease in the levels of indole-3-acetic acid, indole-3-acetaldehyde and tryptophol compared to the wild type strain SM. In addition, a significant decrease in indole-3-pyruvate decarboxylase enzyme activity by ∼50% was identified confirming a functional knock-out. Consequently, a reduction in the plant growth promoting response of strain SMIT568s10 was observed in terms of root length and lateral root proliferation as well as the total dry weight of the treated plants. Residual indole-3-pyruvate decarboxylase enzyme activity, and indole-3-acetic acid, tryptophol and indole-3-acetaldehyde formed along with the plant growth promoting response by strain SMIT568s10 in comparison with an untreated set suggest the presence of more than one copy of ipdC in the A. brasilense SM genome.  相似文献   

4.
Summary Although indole-3-acetic acid (IAA) is a well-known plant hormone, the main IAA biosynthetic pathway from l-tryptophan (Trp) via indole-3-pyruvic acid (IPyA) has yet to be elucidated. Previous studies have suggested that IAA is produced by Enterobacter cloacae isolated from the rhizosphere of cucumbers and its biosynthetic pathway may possibly be the same as that in plants. To elucidate this pathway, the IAA biosynthetic gene was isolated from a genomic library of E. cloacae by assaying for the ability to convert Trp to IAA. DNA sequence analysis showed that this gene codes for only one enzyme and its predicted protein sequence has extensive homology with pyruvate decarboxylase in yeast and Zymomonas mobilis. Cell-free extracts prepared from Escherichia coli harboring this gene could convert IPyA to indole-3-acetaldehyde (IAAld). These results clearly show that this pathway is mediated only by indolepyruvate decarboxylase, which catalyzes the conversion of IPyA to IAAld.  相似文献   

5.
Enterobacter cloacae, isolated from the rhizosphere of cucumbers, produces large amounts of indole-3-acetic acid. Indolepyruvate decarboxylase, the key enzyme in the biosynthetic pathway of indole-3-acetic acid, catalyses the formation of indole-3-acetaldehyde and carbon dioxide from indole-3-pyruvic acid. The enzyme requires the cofactors thiamine diphosphate and magnesium ions for catalytic activity. Recombinant indolepyruvate decarboxylase was purified from the host Escherichia coli strain JM109. Specificity of the enzyme for the substrates indole-3-pyruvic acid, pyruvic acid, benzoylformic acid, and seven benzoylformic acid analogues was investigated using a continuous optical assay. Stopped-flow kinetic data showed no indication for substrate activation in the decarboxylation reaction of indole-3-pyruvic acid, pyruvic acid or benzoylformic acid. Size exclusion chromatography and small angle X-ray solution scattering experiments suggested the tetramer as the catalytically active state and a pH-dependent subunit association equilibrium. Analysis of the kinetic constants of the benzoylformic acid analogues according to Hansch et al. [Hansch, C., Leo, A., Unger, S.H., Kim, K.H., Nikaitani, D & Lien, E.J. (1973) J. Med. Chem.16, 1207-1216] and comparison with indole-3-pyruvic acid conversion by pyruvate decarboxylases from Saccharomyces cerevisiae and Zymomonas mobilis provided some insight into the catalytic mechanism of indolepyruvate decarboxylase.  相似文献   

6.
7.
Indolepyruvate decarboxylase, a key enzyme for indole-3-acetic acid biosynthesis, was found in extracts of Enterobacter cloacae. The enzyme catalyzes the decarboxylation of indole-3-pyruvic acid to yield indole-3-acetaldehyde and carbon dioxide. The enzyme was purified to apparent homogeneity from Escherichia coli cells harboring the genetic locus for this enzyme obtained from E. cloacae. The results of gel filtration experiments showed that indolepyruvate decarboxylase is a tetramer with an M(r) of 240,000. In the absence of thiamine pyrophosphate and Mg2+, the active tetramers dissociate into inactive monomers and dimers. However, the addition of thiamine pyrophosphate and Mg2+ to the inactive monomers and dimers results in the formation of active tetramers. These results indicate that the thiamine pyrophosphate-Mg2+ complex functions in the formation of the tetramer, which is the enzymatically active holoenzyme. The enzyme exhibited decarboxylase activity with indole-3-pyruvic acid and pyruvic acid as substrates, but no decarboxylase activity was apparent with L-tryptophan, indole-3-lactic acid, beta-phenylpyruvic acid, oxalic acid, oxaloacetic acid, and acetoacetic acid. The Km values for indole-3-pyruvic acid and pyruvic acid were 15 microM and 2.5 mM, respectively. These results indicate that indole-3-acetic acid biosynthesis in E. cloacae is mediated by indolepyruvate decarboxylase, which has a high specificity and affinity for indole-3-pyruvic acid.  相似文献   

8.
Tryptophol Formation by Zygosaccharomyces priorianus   总被引:2,自引:1,他引:1       下载免费PDF全文
Zygosaccharomyces priorianus converted L-tryptophan to tryptophol and to small quantities of indole-3-acetic acid. Neither tryptophol nor indole-3-acetic acid was metabolized when added separately to growing cultures. The possible intermediacy of indole-3-pyruvic acid, indole-3-acetaldehyde, and tryptamine in the degradation of L-tryptophan was tested by feeding these compounds to Z. priorianus and Saccharomyces cerevisiae. Indole-3-pyruvic acid and indole-3-acetaldehyde were converted to tryptophol and indole-3-acetic acid, with the latter accumulating only in small amounts. Tryptamine was converted to its N-acetyl derivative by these organisms. A qualitative study was made on the metabolism of L-phenylalanine, L-tyrosine, and L-5-hydroxytryptophan by these organisms. Like L-tryptophan, these amino acids were metabolized to their respective alcohol and acid derivatives. Of a large number of organisms tested, the yeasts possessed the highest capacity for degrading L-tryptophan to tryptophol.  相似文献   

9.
Azospirillum brasilense isolated from the rhizosphere of different plants has the ability to excrete indole-3-acetic acid (IAA) into the culture media. Cosmid p0.2, isolated from an A. brasilense Sp245 genome library in pLAFR1, complements the Tn5-induced mutant SpM7918 of A. brasilense Sp6 which excretes reduced amounts of IAA. Restriction mapping and gene expression studies identified a BglII-EcoRI 4.3 kb fragment of p0.2 sufficient for the restoration of high levels of IAA production in mutant SpM7918. Tn5 mutagenesis localized the gene responsible on a 1.8 kb SmaI fragment. Nucleotide sequence analysis revealed that this fragment contains one complete open reading grame. The predicted protein sequence shows extensive homology with the indole-3-pyruvate decarboxylase of Enterobacter cloacae and the pyruvate decarboxylases of Saccharomyces cerevisiae and Zymomonas mobilis. The A. brasilense mutant Sp245a, constructed by homogenotization of a Tn5 insertion derivative of the 1.8 kb SmaI fragment, also displayed reduced IAA production. Introduction of the cloned wild-type gene into Rhizobium meliloti 1021 resulted in increased IAA production. Cell-free extracts prepared from R. meliloti and A. brasilense transconjugants harboring this gene could convert indole-3-pyruvic acid to indole-3-acetaldehyde and tryptophol. These results clearly demonstrate that IAA production in A. brasilense is mediated by indole-3-pyruvate decarboxylase.  相似文献   

10.
Infection of maize (Zea mays) plants with the smut fungus Ustilago maydis is characterized by excessive host tumour formation. U. maydis is able to produce indole-3-acetic acid (IAA) efficiently from tryptophan. To assess a possible connection to the induction of host tumours, we investigated the pathways leading to fungal IAA biosynthesis. Besides the previously identified iad1 gene, we identified a second indole-3-acetaldehyde dehydrogenase gene, iad2. Deltaiad1Deltaiad2 mutants were blocked in the conversion of both indole-3-acetaldehyde and tryptamine to IAA, although the reduction in IAA formation from tryptophan was not significantly different from Deltaiad1 mutants. To assess an influence of indole-3-pyruvic acid on IAA formation, we deleted the aromatic amino acid aminotransferase genes tam1 and tam2 in Deltaiad1Deltaiad2 mutants. This revealed a further reduction in IAA levels by five- and tenfold in mutant strains harbouring theDeltatam1 andDeltatam1Deltatam2 deletions, respectively. This illustrates that indole-3-pyruvic acid serves as an efficient precursor for IAA formation in U. maydis. Interestingly, the rise in host IAA levels upon U. maydis infection was significantly reduced in tissue infected with Deltaiad1Deltaiad2Deltatam1 orDeltaiad1Deltaiad2Deltatam1Deltatam2 mutants, whereas induction of tumours was not compromised. Together, these results indicate that fungal IAA production critically contributes to IAA levels in infected tissue, but this is apparently not important for triggering host tumour formation.  相似文献   

11.
Disruption of ipdC, a gene involved in indole-3-acetic acid (IAA) production by the indole pyruvate pathway in Azospirillum brasilense Sp7, resulted in a mutant strain that was not impaired in IAA production with lactate or pyruvate as the carbon source. A tryptophan auxotroph that is unable to convert indole to tryptophan produced IAA if tryptophan was present but did not synthesise IAA from indole. Similar results were obtained for a mutant strain with additional mutations in the genes ipdC and trpD. This suggests the existence of an alternative Trp-dependent route for IAA synthesis. On gluconate as a carbon source, IAA production by the ipdC mutant was inhibited, suggesting that the alternative route is regulated by catabolite repression. Using permeabilised cells we observed the enzymatic conversion of tryptamine and indole-3-acetonitrile to IAA, both in the wild-type and in the ipdC mutant. IAA production from tryptamine was strongly decreased when gluconate was the carbon source.  相似文献   

12.
Summary Tryptamine was converted by etiolated pea seedlings into IAA, tryptophol, and an appreciable amount of an unknown metabolite. This latter compound was characterised by TLC and electrophoresis and identified, by mass spectrometry and enzymatic cleavage, as tryptophol glycoside: indole-3-ethyl--d-glycopyranoside.Abbreviations IAA indole-3-acetic acid - IAAld indole-3-acetaldehyde - TOH tryptophol - TO-glc tryptophol glucoside  相似文献   

13.
Expression of the Azospirillum brasilense ipdC gene, encoding an indole-3-pyruvate decarboxylase, a key enzyme in the production of indole-3-acetic acid (IAA) in this bacterium, is upregulated by IAA. Here, we demonstrate that the ipdC gene is the promoter proximal gene in a bicistronic operon. Database searches revealed that the second gene of this operon, named iaaC, is well conserved evolutionarily and that the encoded protein is homologous to the Escherichia coli protein SCRP-27A, the zebrafish protein ES1, and the human protein KNP-I/GT335 (HES1), all of unknown function and belonging to the DJ-1/PfpI superfamily. In addition to this operon structure, iaaC is also transcribed monocistronically. Mutation analysis of the latter gene indicated that the encoded protein is involved in controlling IAA biosynthesis but not ipdC expression. Besides being upregulated by IAA, expression of the ipdC-iaaC operon is pH dependent and maximal at acidic pH. The ipdC promoter was studied using a combination of deletion analyses and site-directed mutagenesis. A dyadic sequence (ATTGTTTC(GAAT)GAAACAAT), centered at -48 was demonstrated to be responsible for the IAA inducibility. This bacterial auxin-responsive element does not control the pH-dependent expression of ipdC-iaaC.  相似文献   

14.
15.
A study has been made of the effects of solvent, temperature, and the antioxidant, sodium diethyldithiocarbamate, on the breakdown of indole-3-pyruvic acid to indole-3-acetic acid (IAA). In addition, the degradation of tryptophan, tryptamine, indole-3-pyruvic acid, indole-3-acetaldehyde and indole-3-ethanol to IAA during the purification and analysis of extracts from Pinus sylvestris L. needles, in the presence and absence of sodium diethyldithiocarbamate, has been investigated. The data obtained indicate that if the antioxidant is supplied throughout the analytical sequence there is a marked reduction in the spontaneous formation of IAA from other indolic compounds and, by inference, the stability of indoles in general is enhanced.  相似文献   

16.
We isolated 11 low-indole-3-acetic acid (IAA)-producing mutants of Bradyrhizobium elkanii by Tn5 mutagenesis. The amount of IAA produced by each mutant was 2.2-13.6% of that of the wild-type. It was found by resting cell reactions that the biosynthetic step to convert indole-3-pyruvic acid to indole-3-acetaldehyde was blocked in all the mutants.  相似文献   

17.
In a study of various phytopathogenic fungi, we found that fungithat belong to the genus Rhizoctonia produce IAA efficientlyfrom tryptophan. R. solani Kühn MAFF-305219, in particular,produced large amounts of tryptophol (Tol), which was assumedto be a specific by-product of the indole-3-pyruvate (IPy) pathway,in addition to IAA. Therefore, this fungus seemed suitable foranalysis of the function and the regulation of the biosynthesisof auxin by a fungal pathogen. Under normal aerobic conditions,the ratio of IAA to Tol synthesized by this strain was higherthan that under less aerobic conditions. In metabolic studieswith various indole derivatives, R. solani converted L-tryptophanand indole-3-acetaldehyde to IAA and Tol, but other indole derivativeswere scarcely metabolized. These results suggest that both IAAand Tol are synthesized from tryptophan through the IPy pathwayin Rhizoctonia. (Received May 27, 1996; Accepted July 8, 1996)  相似文献   

18.
目的:利用重组大肠杆菌全细胞转化色氨酸生产IAA.方法:在大肠杆菌胞内构建两条全新的IAA合成途径,即吲哚-3-乙酰胺(indole-3-acetamide,IAM)途径和色胺(tryptamine,TRP)途径.结果:IAM途径涉及两个酶,分别是色氨酸-2-单加氧酶(IAAM)和酰胺酶(AMI1),构建好的重组大肠杆...  相似文献   

19.
We isolated the ipdc gene coding for indole-3-pyruvic acid decarboxylase (IPDC), a key enzyme in the indole-3-pyruvic acid pathway for indole-3-acetic acid biosynthesis, in the plant growth-promoting rhizobacterium Azospirillum lipoferum FS. Gel mobility-shift assay showed the presence of two DNA-binding proteins that might be involved in regulation of the ipdc gene expression.  相似文献   

20.
Obligately and facultatively methylotrophic bacteria with different pathways of C1 metabolism were found to be able to produce auxins, particularly indole-3-acetic acid (IAA), in amounts of 3-100 micrograms/ml. Indole-3-pyruvic acid and indole-3-acetamide were detected only in methylobacteria with the serine pathway of C1 metabolism, Methylobacterium mesophilicum and Aminobacter aminovorans. The production of auxins by methylobacteria was stimulated by the addition of tryptophan to the growth medium and was inhibited by ammonium ions. The methylobacteria under study lacked tryptophan decarboxylase and tryptophan side-chain oxidase. At the same time, they were found to contain several aminotransferases. IAA is presumably synthesized by methylobacteria through indole-3-pyruvic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号