首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Undifferentiated stem cells may support a greater development of cloned embryos compared with differentiated cell types due to their ease of reprogramming during the nuclear transfer (NT) process. Hence, stem cells may be more suitable as nuclear donor cells for NT procedures than are somatic cells. Embryonic germ (EG) cells are undifferentiated stem cells that are isolated from cultured primordial germ cells (PGC) and can differentiate into several cell types. In this study, the in vitro development of NT embryos using porcine EG cells and their derivative neural precursor (NP) cells was investigated, thus eliminating any variation in genetic differences. The rates of fusion did not differ between NT embryos from EG and NP cells; however, the rate of cleavage in NT embryos derived from EG cells was significantly higher (p < 0.05) than that from NP cells (141/247 [57.1%] vs. 105/228 [46.1%]). Similarly, the rate of blastocyst development was significantly higher (P < 0.05) in NT using EG cells than the rate using NP cells (43/247 [17.4%] vs. 18/228 [7.9%]). The results obtained from the present study in pigs demonstrate a reduced capability for nuclear donor cells to be reprogrammed following the differentiation of porcine EG cells. Undifferentiated EG cells may be more amenable to reprogramming after reconstruction compared with differentiated somatic cells.  相似文献   

2.
This study reports for the first time the production of chicken germline chimeras by transfer of embryonic germ (EG) cells into recipient embryos of different strain. EG cells were established by the subculture of gonadal tissue cells retrieved from stage 28 White Leghorn (WL) embryos with I/I gene. During primary culture (P(0)), gonadal primordial germ cells (gPGCs) in the stromal cells began to form colonies after 7 days in culture with significant (P < 0.0001) increase in cell population. Colonized gPGCs were then subcultured with chicken embryonic fibroblast monolayer for EG cell preparation. Prepared EG cells or gPGCs at P(0) were transferred to stage 17 Korean Ogol chicken (KOC) embryos with i/i gene. The recipient chickens were raised for 6 months to sexual maturity, then a testcross analysis by artificial insemination was conducted for evaluating germline chimerism. As results, transfer of EG cells and gPGCs yielded total 17 germline chimeras; 2 out of 15 (13.3%) and 15 of 176 sexually matured chickens (8.5%), respectively. The efficiency of germline transmission in the chimeras was 1.5-14.6% in EG cells, while 1.3-27.6% in gPGCs. In conclusion, chicken germline chimeras could be produced by the transfer of EG cells, as well as gPGCs, which might enormously contribute to establishing various innovative technologies in the field of avian transgenic research for bioreactor production.  相似文献   

3.
We have derived putative embryonic stem (ES) cell lines from preimplantation rabbit embryos and report here their initial characterization. Two principal cell types emerged following serial passage of explanted embryos, and each has subsequently given rise to immortalized cell lines. One cell type has morphology identical to primary outgrowths of trophectoderm, is strictly feeder-cell dependent, and spontaneously forms trophectodermal vesicles at high cell density. The second type appears to represent pluripotent ES cells derived from the inner cell mass as evidenced by (1) ability to grow in an undifferentiated state on feeder layers, (2) maintenance of a predominantly normal karyotype through serial passage (over 1 year), and (3) ability to form embryoid bodies, which form terminally differentiated cell types representative of ectoderm, mesoderm, and endoderm. These ES cells may ultimately be suitable for introduction of germline mutations (via homologous recombination). The rabbit's size, reproductive capability, and well-characterized physiology make it suitable for a wide range of investigations, particularly for development of large animal models of human disease. © 1993 Wiley-Liss, Inc.  相似文献   

4.
5.
Early porcine embryos at the four- to eight-cell stage can be infected with either the virulent (NADL-8) or avirulent KBSH strain of porcine parvovirus (PPV) by microinjection or by incubation of embryos with virus. Treatment of embryos by microinjection of virus or incubation in media with virus did not significantly inhibit in vitro development of the embryos when compared with untreated controls. RNA-DNA hybridization was used to identify the presence of virus associated with embryos. It was found that PPV-DNA was present in viable embryos after microinjection of embryos with KBSH and NADL-8 strains of PPV and after incubation of embryos with KBSH strain. The data indicated the presence of replicative virus associated with viable porcine embryos.  相似文献   

6.
HLA-G expression in human embryonic stem cells and preimplantation embryos   总被引:1,自引:0,他引:1  
Human leukocyte Ag-G, a tolerogenic molecule that acts on cells of both innate and adaptive immunity, plays an important role in tumor progression, transplantation, placentation, as well as the protection of the allogeneic fetus from the maternal immune system. We investigated HLA-G mRNA and protein expression in human embryonic stem cells (hESC) derived from the inner cell mass (ICM) of blastocysts. hESC self-renew indefinitely in culture while maintaining pluripotency, providing an unlimited source of cells for therapy. HLA-G mRNA was present in early and late passage hESC, as assessed by real time RT-PCR. Protein expression was demonstrated by flow cytometry, immunocytochemistry, and ELISA on an hESC extract. Binding of HLA-G with its ILT2 receptor demonstrated the functional active status. To verify this finding in a physiologically relevant setting, HLA-G protein expression was investigated during preimplantation development. We demonstrated HLA-G protein expression in oocytes, cleavage stage embryos, and blastocysts, where we find it in trophectoderms but also in ICM cells. During blastocyst development, a downregulation of HLA-G in the ICM cells was present. This data might be important for cell therapy and transplantation because undifferentiated hESC can contaminate the transplant of differentiated stem cells and develop into malignant cancer cells.  相似文献   

7.
Embryonic germ (EG) cells are undifferentiated stem cells isolated from cultured primordial germ cells (PGC). Porcine EG cell lines with capacities of both in vitro and in vivo differentiation have been established. Because EG cells can be cultured indefinitely in an undifferentiated state, they may be more suitable for nuclear donor cells in nuclear transfer (NT) than somatic cells that have limited lifespan in primary culture. Use of EG cells could be particularly advantageous to provide an inexhaustible source of transgenic cells for NT. In this study the efficiencies of transgenesis and NT using porcine fetal fibroblasts and EG cells were compared. The rate of development to the blastocyst stage was significantly higher in EG cell NT than somatic cell NT (94 of 518, 18.2% vs. 72 of 501, 14.4%). To investigate if EG cells can be used for transgenesis in pigs, green fluorescent protein (GFP) gene was introduced into porcine EG cells. Nuclear transfer embryos using transfected EG cells gave rise to blastocysts (29 of 137, 21.2%) expressing GFP based on observation under fluorescence microscope. The results obtained from the present study suggest that EG cell NT may have advantages over somatic cell NT, and transgenic pigs may be produced using EG cells.  相似文献   

8.
Establishment of pluripotent cell lines from porcine preimplantation embryos   总被引:11,自引:0,他引:11  
Embryonic stem (ES) cells are pluripotent cells isolated from in vitro culture of preimplantation embryos. Experiments were undertaken to identify preimplantation embryonic stages and culture conditions under which pluripotent, porcine embryo-derived cell lines could be isolated. Cell lines were established from in vitro culture of intact, porcine early hatched blastocysts and isolated inner cell masses (ICM) from intermediate and late hatched blastocysts on feeder layers prepared from permanent mouse embryonic fibroblasts (STO). The cells of these porcine embryo-derived cell lines had a morphology similar to that of murine ES cells, but colony morphology was more epithelial-like. The cell lines retained a normal diploid karyotype, consistently expressed alkaline phosphatase activity, and survived cryopreservation. When subjected to in vitro differentiation, either spontaneous or induced, the embryo-derived cell lines differentiated extensively into a wide range of cell types representing the 3 embryonic germ layers. In vivo pluripotency of the cells was demonstrated by birth of a chimeric piglet, documented by pigmentation and DNA markers, and the ability to direct the development of nuclear-transfer embryos to the blastocyst stage. Such pluripotent embryo-derived cells provide a potential route for porcine genetic manipulation.  相似文献   

9.
10.
Mitochondrial function is dependent upon regulation of biogenesis and dynamics. A number of studies have documented the importance of these organelles in both preimplantation embryos and embryonic stem cells (ESCs), however it remains unclear how mitochondria respond to their immediate microenvironment through modulation of morphology and movement, or whether perturbations in these processes will have a significant impact following differentiation/implantation. Here we review existing literature on two key aspects of nuclear–mitochondrial cross-talk and the dynamic processes involved in mediating mitochondrial function through regulation of mitochondrial biogenesis, morphology and movement, with particular emphasis on embryos and ESCs.  相似文献   

11.
Research using human embryos and embryonic stem cells is viewed as important for various reasons. Apart from questions concerning legal regulations, numerous ethical objections are raised pertaining to the use of surplus embryos from reproductive medicine as well as the creation of embryos and stem cells through cloning. In the hopes of avoiding ethical problems, alternatives have been proposed including the extraction of egg cells from "dead" embryos derived from in vitro fertilization procedures, the extraction of pluripotent stem cells from blastocysts, technologies such as "altered nuclear transfer" (ANT) and "oocyte-assisted reprogramming" (ANT-OAR) as well as parthenogenesis. Initial ethical assessments show that certain questions pertaining to such strategies have remained unanswered. Furthermore, with the help of new or more differentiated biotechnological procedures, it is possible to create chimeras and hybrids in which human and non-human cells are combined. Human-animal chimeras, in which gametes or embryonic tissue have been mixed with embryonic or adult stem cells, demonstrate a different "quality" and "degree of penetration" from those produced in previous experiments. Not only does this have consequences regarding questions of patentability, this situation also raises fundamental questions concerning the human being's self image, the concept of person, identity and species and the moral rights and duties that are connected with such concepts. There is a need for legal regulation, on the national as well as the international level.  相似文献   

12.
Knowledge regarding the timing of embryonic expression of the mammalian genome is of relevance for the development of preimplantation diagnostic methods for human genetic diseases. For development of preimplantation diagnosis of lysosomal storage diseases, it will be necessary to know at which embryonic stage the genes for lysosomal enzymes are expressed. In previous studies by other investigators, it has been shown that lysosomal alpha- and beta-galactosidase and beta-glucuronidase in murine embryos increase 50- to 100-fold in activity between the two-cell and late blastocyst stage. We describe here expression of lysosomal beta-galactosidase in preimplantation ovine (two-cell through midblastocyst) and porcine (two-cell through late blastocyst) embryos. Expression of beta-galactosidase in ovine and porcine preimplantation embryos followed a similar rate of increase as that described for murine embryos. Activity of beta-galactosidase increased over 10-fold between the two- to four-cell and midblastocyst stages in ovine embryos, and 300-fold between the two- to four-cell and late blastocyst stages in porcine embryos. Activity expressed on a per cell basis was relatively constant in ovine embryos, as has been described in murine embryos, and increased approximately 5-fold on a per cell basis in porcine embryos. Activity of beta-galactosidase in ovine and porcine embryos initially was greater than 12-fold on a per cell or per embryo basis than in murine embryos evaluated. The knowledge of beta-galactosidase embryonic expression may provide the basis for preimplantation diagnosis of genetic beta-galactosidase deficiency in these species.  相似文献   

13.
14.
15.
Our objective was to investigate the effects of in vitro culture (IVC) medium supplemented with amphiregulin (AREG) on the preimplantation embryonic development of porcine (Genus: Sus domestica, Species: Landrace) embryos derived from in vitro fertilization (IVF) and parthenogenetic activation (PA). In vitro fertilization and PA embryos at the 1-cell stage were cultured in IVC medium supplemented with 0, 0.5, 5, or 50 ng/mL AREG for 7 d. There were significantly greater total numbers of cells in blastocysts of IVF and PA embryos cultured with 50 ng/mL AREG compared with that of controls. In vitro fertilization and PA embryos were then cultured in NCSU-23 medium supplemented with 50 ng/mL AREG on Days 1 through 7, Days 1 through 3 (early stage), or Days 4 through 7 (late stage), or without AREG. There were significantly greater numbers of trophoblast cells in the late-stage and full-term groups of IVF and PA embryos than in the early-stage and control groups. The presence of AREG protein in IVF-derived blastocysts was detected using a polyclonal AREG antibody and indirect immunofluorescence. Amphiregulin protein was localized in both the cytoplasm and nucleus. Using real-time polymerase chain reaction, we detected the expression of AREG mRNA in all developmental stages of IVF and PA embryos; however, the expression level varied according to stage. Thus, the incubation of porcine IVF and PA embryos in AREG-supplemented culture medium mainly at the late preimplantation stage increases the numbers of trophoblast cells.  相似文献   

16.
Primordial germ cells (PGCs) are embryonic germ cell precursors. Although the developmental potency of PGCs is restricted to the germ lineage, PGCs can acquire pluripotency, as verified by the in vitro establishment of embryonic germ (EG) cells and the in vivo production of testicular teratomas. PGC-specific inactivation of PTEN, which is a lipid phosphatase antagonizing phosphoinositide-3 kinase (PI3K), enhances both EG cell production and testicular teratoma formation. Here, we analyzed the effect of the serine/threonine kinase AKT, one of the major downstream effectors of PI3K, on the developmental potency of PGCs. We used transgenic mice that expressed an AKT-MER fusion protein, the kinase activity of which could be regulated by the ligand of modified estrogen receptor (MER), 4-hydroxytamoxifen. We found that hyperactivation of AKT signaling in PGCs at the proliferative phase dramatically augmented the efficiency of EG cell establishment. Furthermore, AKT signaling activation substituted to some extent for the effects of bFGF, an essential growth factor for EG cell establishment. By contrast, AKT activation had no effect on germ cells that were in mitotic arrest or that began meiosis at a later embryonic stage. In the transgenic PGCs, AKT activation induced phosphorylation of GSK3, which inhibits its kinase activity; enhanced the stability and nuclear localization of MDM2; and suppressed p53 phosphorylation, which is required for its activation. The p53 deficiency, but not GSK3 inhibition, recapitulated the effects of AKT hyperactivation on EG cell derivation, suggesting that p53 is one of the crucial downstream targets of the PI3K/AKT signal and that GSK3 is not.  相似文献   

17.
High-grade transgenic somatic chimeras from chicken embryonic stem cells   总被引:9,自引:0,他引:9  
Male and female embryonic stem (ES) cell lines were derived from the area pellucidae of Stage X (EG&K) chicken embryos. These ES cell lines were grown in culture for extended periods of time and the majority of the cells retained a diploid karyotype. When reintroduced into Stage VI-X (EG&K) recipient embryos, the cES cells were able to contribute to all somatic tissues. By combining irradiation of the recipient embryo with exposure of the cES cells to the embryonic environment in diapause, a high frequency and extent of chimerism was obtained. High-grade chimeras, indistinguishable from the donor phenotype by feather pigmentation, were produced. A transgene encoding GFP was incorporated into the genome of cES cells under control of the ubiquitous promoter CX and GFP was widely expressed in somatic tissues. Although cES cells made extensive contributions to the somatic tissues, contribution to the germline was not observed.  相似文献   

18.
We report on the establishment of a human embryonic stem cell (HESC) line from a preimplantation fragile X-affected embryo and demonstrate its value as an appropriate model to study developmentally regulated events that are involved in the pathogenesis of this disorder. Fragile X syndrome results from FMR1 gene inactivation due to a CGG expansion at the 5'UTR region of the gene. Early events in FMR1 silencing have not been fully characterized due to the lack of appropriate animal or cellular models. Here we show that, despite the presence of a full mutation, affected undifferentiated HESCs express FMR1 and are DNA unmethylated. However, epigenetic silencing by DNA methylation and histone modification occurs upon differentiation. Our unique cell system allows the dissection of the sequence by which these epigenetic changes are acquired and illustrates the importance of HESCs in unraveling developmentally regulated mechanisms associated with human genetic disorders.  相似文献   

19.
Pluripotent stem cells provide a platform to interrogate control elements that function to generate all cell types of the body. Despite their utility for modeling development and disease, the relationship of mouse and human pluripotent stem cell states to one another remains largely undefined. We have shown that mouse embryonic stem (ES) cells and epiblast stem cells (EpiSCs) are distinct, pluripotent states isolated from pre- and post-implantation embryos respectively. Human ES cells are different than mouse ES cells and share defining features with EpiSCs, yet are derived from pre-implantation human embryos. Here we show that EpiSCs can be routinely derived from pre-implantation mouse embryos. The preimplantation-derived EpiSCs exhibit molecular features and functional properties consistent with bona fide EpiSCs. These results provide a simple method for isolating EpiSCs and offer direct insight into the intrinsic and extrinsic mechanisms that regulate the acquisition of distinct pluripotent states.  相似文献   

20.
The production of mouse chimeras is a common step in the establishment of genetically modified animal strains. Chimeras also provide a powerful experimental tool for following cell behavior during both prenatal and postnatal development. This protocol outlines a simple and economical technique for the production of large numbers of mouse chimeras using traditional diploid morula<-->diploid embryonic stem (ES) cell aggregations. Additional steps are included to describe the procedures necessary to produce specialized tetraploid chimeras using tetraploid morula<-->diploid ES cell aggregations. This increasingly popular form of chimera produces embryos of nearly complete ES cell derivation that can be used to speed transgenic production or ask developmental questions. Using this protocol, mouse chimeras can be generated and transferred to pseudopregnant surrogate mothers in a 5-d period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号