首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Assembly of interferon-β enhanceosome from its individual protein components and of enhancer DNA has been studied in solution using a combination of fluorescence anisotropy, microcalorimetry, and CD titration. It was shown that the enhancer binds only one full-length phosphomimetic IRF-3 dimer at the PRDIII-PRDI sites, and this binding does not exhibit cooperativity with binding of the ATF-2/c-Jun bZIP (leucine zipper dimer with basic DNA recognition segments) heterodimer at the PRDIV site. The orientation of the bZIP pair is, therefore, not determined by the presence of the IRF-3 dimer, but is predetermined by the asymmetry of the PRDIV site. In contrast, bound IRF-3 dimer interacts strongly with the NF-κB (p50/p65) heterodimer bound at the neighboring PRDII site. The orientation of bound NF-κB is also predetermined by the asymmetry of the PRDII site and is the opposite of that found in the crystal structure. The HMG-I/Y protein, proposed as orchestrating enhanceosome assembly, interacts specifically with the PRDII site of the interferon-β enhancer by inserting its DNA-binding segments (AT hooks) into the minor groove, resulting in a significant increase in NF-κB binding affinity for the major groove of this site.  相似文献   

5.
6.
The enhanceosome   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
Human cytomegalovirus (HCMV) infection regulates a number of genes involved in the host antiviral response. We have previously reported that HCMV attenuates the expression of beta interferon (IFN-beta) and a number of proinflammatory chemokines, and this attenuation is mediated by the HCMV immediate-early protein IE86. The present study seeks to identify the mechanism by which IE86 blocks IFN-beta expression. We demonstrate that the induction of IFN-beta during HCMV infection requires the activation of both the IRF-3 and the NFkappaB pathways. Therefore, IE86 may target either pathway to block IFN-beta expression. Our results show that IE86 does not block IRF-3 phosphorylation, dimerization, nuclear translocation, or target gene expression. However, using gel shift analysis, we demonstrate that IE86 efficiently inhibits virus-induced binding of NFkappaB to the IFN-beta promoter, resulting in attenuation of IFN-beta and NFkappaB-dependent gene expression. Furthermore, IE86 expression inhibits tumor necrosis factor alpha-induced NFkappaB DNA binding and target gene expression. Together, these results identify IE86 as a NFkappaB antagonist, which results in the suppression of NFkappaB-dependent cytokine and chemokine gene expression.  相似文献   

10.
11.
12.
13.
Small molecules that modulate specific protein functions are valuable tools for dissecting complex signaling pathways. Here, we identified a small molecule that induces the assembly of the interferon-beta (IFN-beta) enhanceosome by stimulating all the enhancer-binding activator proteins: ATF2/c-JUN, IRF3, and p50/p65 of NF-kappaB. This compound stimulates mitogen-activated protein kinase kinase kinase 1 (MEKK1), which is a member of a family of proteins involved in stress-mediated signaling pathways. Consistent with this, MEKK1 activates IRF3 in addition to ATF2/c-JUN and NF-kappaB for the assembly of the IFN-beta enhanceosome. MEKK1 activates IRF3 through the c-JUN amino-terminal kinase (JNK) pathway but not the p38 and IkappaB kinase (IKK) pathway. Taken together with previous observations, these results implicate that, for the assembly of an IFN-beta enhanceosome, MEKK1 can induce IRF3 and ATF2/c-JUN through the JNK pathway, whereas it can induce NF-kappaB through the IKK pathway. Thus, specific MEKK family proteins may be able to integrate some of multiple signal transduction pathways leading to the specific activation of the IFN-beta enhanceosome.  相似文献   

14.
15.
16.
17.
Virus infection stimulates potent antiviral responses; specifically, Epstein-Barr virus (EBV) infection induces and activates interferon regulatory factor 7 (IRF-7), which is essential for production of alpha/beta interferons (IFN-alpha/beta) and upregulates expression of Tap-2. Here we present evidence that during cytolytic viral replication the immediate-early EBV protein BZLF-1 counteracts effects of IRF-7 that are central to host antiviral responses. We initiated these studies by examining IRF-7 protein expression in vivo in lesions of hairy leukoplakia (HLP) in which there is abundant EBV replication but the expected inflammatory infiltrate is absent. This absence might predict that factors involved in the antiviral response are absent or inactive. First, we detected significant levels of IRF-7 in the nucleus, as well as in the cytoplasm, of cells in HLP lesions. IRF-7 activity in cell lines during cytolytic viral replication was examined by assay of the IRF-7-responsive promoters, IFN-alpha4, IFN-beta, and Tap-2, as well as of an IFN-stimulated response element (ISRE)-containing reporter construct. These reporter constructs showed consistent reduction of activity during lytic replication. Both endogenous and transiently expressed IRF-7 and EBV BZLF-1 proteins physically associate in cell culture, although BZLF-1 had no effect on the nuclear localization of IRF-7. However, IRF-7-dependent activity of the IFN-alpha4, IFN-beta, and Tap-2 promoters, as well as an ISRE promoter construct, was inhibited by BZLF-1. This inhibition occurred in the absence of other EBV proteins and was independent of IFN signaling. Expression of BZLF-1 also inhibited activation of IRF-7 by double-stranded RNA, as well as the activity of a constitutively active mutant form of IRF-7. Negative regulation of IRF-7 by BZLF-1 required the activation domain but not the DNA-binding domain of BZLF-1. Thus, EBV may subvert cellular antiviral responses and immune detection by blocking the activation of IFN-alpha4, IFN-beta, and Tap-2 by IRF-7 through the medium of BZLF-1 as a negative regulator.  相似文献   

18.
19.
20.
Virus infection triggers innate responses to host cells including production of type I interferon (IFN). Since IFN production is also induced by treatment with poly(I:C), viral double-stranded (ds) RNA has been postulated to play a direct role in the process. In the present study, we investigated the effect of dsRNA binding proteins on virus-induced activation of the IFN-beta gene. We found that PACT, originally identified as protein activator for dsRNA-dependent protein kinase (PKR) and implicated in the regulation of translation, augmented IFN-beta gene activation induced by Newcastle disease virus. Concomitantly with the augmented activity of IFN-beta enhancer, increased activity of NF-kappaB and IRF-3 and IRF-7 was observed. For the observed effect, the dsRNA-binding activity of PACT was essential. We identified residues of PACT that interact with a presumptive target molecule to exert its function. Furthermore, PACT colocalized with viral replication complex in the infected cells. Thus the observed effect of PACT is novel and PACT is involved in the regulation of viral replication and results in a marked increase of cellular IFN-beta gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号