首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Rat hepatocytes were cryopreserved in hormonally-defined medium (HDM) containing either fetal bovine serum (FBS), glycerol, dimethyl sulfoxide (DMSO), sucrose or a mixture of these as a cryoprotectant. The best survival was with 10% (v/v) DMSO containing 30% (v/v) FBS using 5 x 10(5) hepatocytes ml(-1) at -70 degrees C for 5 d on type I collagen-coated dishes. After thawing, the cell viability was 81% determined by the MTT-test. The cryopreserved hepatocytes had the capacity of albumin synthesis similar to hepatocytes without cryopreservation. This result shows that cryopreservation of rat hepatocyte can be used for the evaluation of hepatic functions.  相似文献   

2.
In the unique supply chain of cellular therapies, preservation is important to keep the cell product viable. Many factors in cryopreservation affect the outcome of a cell therapy: (i) formulation and introduction of a freezing medium, (ii) cooling rate, (iii) storage conditions, (iv) thawing conditions and (v) post-thaw processing. This article surveys clinical trials of cellular immunotherapy that used cryopreserved regulatory, chimeric antigen receptor or gamma delta T cells, dendritic cells or natural killer (NK) cells. Several observations are summarized from the given information. The aforementioned cell types have been similarly frozen in media containing 5–10% dimethyl sulfoxide (DMSO) with plasma, serum or human serum albumin. Two common freezing methods are an insulated freezing container such as Nalgene Mr. Frosty and a controlled-rate freezer at a cooling rate of -1°C/min. Water baths at approximately 37°C have been commonly used for thawing. Post-thaw processing of cryopreserved cells varied greatly: some studies infused the cells immediately upon thawing; some diluted the cells in a carrier solution of varying formulation before infusion; some washed cells to remove cryoprotective agents; and others re-cultured cells to recover cell viability or functionality lost due to cryopreservation. Emerging approaches to preserving cellular immunotherapies are also described. DMSO-free formulations of the freezing media have demonstrated improved preservation of cell viability in T lymphocytes and of cytotoxic function in natural killer cells. Saccharides are a common type of molecule used as an alternative cryoprotective agent to DMSO. Improving methods of preservation will be critical to growth in the clinical use of cellular immunotherapies.  相似文献   

3.
After thawing cells, previously cryopreserved in the presence of dimethyl sulfoxide (DMSO), a decrease in their viability and increase in unscheduled DNA synthesis was observed. In 7 days, these parameters restored to the control level. Cryopreservation without DMSO resulted in the decrease in both cell viability and replicative and unscheduled DNA synthesis. In 14 days, these characteristics were seen to return to the normal level. Cryopreservation of cells without DMSO and their preservation in liquid nitrogen induced the frequency of chromosomal aberrations, mostly chromosomal breaks. The frequency of chromosomal aberrations increased with the duration of cell preservation in liquid nitrogen. The normal level was achieved following 7 days after cell thawing. Cells treated with DMSO only (without cryopreservation) display an increased number of chromosomal and chromatid breaks and translocations. Nonrandom distribution of chromosomal aberrations was observed, with particular chromosomes being involved in the appearance of dicentrics and translocations. The data obtained indicate that cryoprotective activity of DMSO is probably associated with the cell repair systems. The detected antimutagenic and mutagenic activity of DMSO may presumably reflect various conditions for its interaction with cells (with or without cryopreservation), as well as it may be specific for the muntjac cell line used in the present work.  相似文献   

4.
The objectives of this study were to determine the effect of cryoprotectants on sperm viability and develop a freezing protocol for long-term storage of P. monodon spermatophores. Spermatophores suspended for 30 min in calcium-free saline (Ca-F saline) containing the cryoprotectants dimethyl sulfoxide (DMSO), ethylene glycol (EG), 1,2-propylene glycol (PG), formamide, and methanol at concentrations of 5, 10, 15, or 20% were studied using a modified eosin-nigrosin staining technique. The smallest reductions in apparent sperm viability occurred with DMSO; therefore, a freezing protocol was developed using Ca-F saline containing 5% DMSO. Spermatophores were cryopreserved using three protocols; cooling to a final temperature of -30, -80 or -80 degrees C and immediately stored in liquid nitrogen (cooling rates of -2, -4, -6, -8, -10, -12, -14 or -16 degrees C/min). Frozen spermatophores were thawed (2 min) at 30, 60, 70, or 90 degrees C. Successful cryopreservation of spermatophores in liquid nitrogen was achieved by a one-step cooling rate of -2 degrees C/min between 25 and -80 degrees C before storing in liquid nitrogen. Optimal thawing was in a 30 degrees C water bath for 2 min; this yielded live sperm after storage in liquid nitrogen for 210 days. Average sperm viability for fresh (97.8+/-2.9%) and cryopreserved spermatophores held for less than 60 days (87.3+/-4.1%) did not differ (P>0.05); however, that for spermatophores stored in liquid nitrogen between 90 and 210 days were lower (P<0.05) and varied from 27.3+/-3.4 to 53.3+/-4.3%. Thawed spermatophores previously held in liquid nitrogen for less than 62 days fertilized eggs (fertilization and hatching rates of 71.6-72.2% and 63.6-64.1%, respectively) at rates comparable to fresh spermatophores (70.8-78.2% and 66.3-67.8%, respectively). In conclusion, sperm within cryopreserved spermatophores stored in liquid nitrogen retained their viability for up to 210 days.  相似文献   

5.
Objectives: Skin‐derived precursors are recognized to be a potentially autologous and accessible source of neural precursor cells for drug screening or cell‐based treatments, in many neurological disorders. Thus, it is necessary to investigate appropriate methods for cryopreservation of such human skin‐derived precursors (hSKPs). The aim of this study was to evaluate different cryopreservation techniques for retention of hSKPs to discover an optimized protocol. Materials and methods: We cryopreserved hSKPs treated with 0%, 10%, 20%, 30% and 40% foetal bovine serum (FBS) and three concentrations of dimethylsulphoxide (DMSO) 5%, 10% and 15%, with two different storage periods in liquid nitrogen (2 days: short‐term storage; and 2 months: long‐term storage). Then, we assessed survival and proliferation levels of the cells after freeze–thaw processes, by viability measurement and colony‐forming assay. For detecting hSKPs, we used immunocytochemistry and RT‐PCR assessments. Results: Our findings indicated that hSKPs cryopreserved in 5% DMSO without FBS, had better survival and proliferation potentials compared to other working formulations. With various concentrations of cryoprotectants over different time periods, hSKPs retained their differentiation potentiality and were able to differentiate into neurons (NFM and βΙΙΙ tubulin‐positive), glial cells (GFAP‐positive) and smooth muscle cells (SMA‐positive). Conclusions: Results revealed that in only 5% DMSO, hSKPs could be cryopreserved for long‐term storage with considerable survival and proliferation levels, without losing multipotency.  相似文献   

6.
目的:改进现有的细胞冷冻保存方法,建立一个不舍二甲基亚砜(DMSO)和血清(FBS)的高效冷冻保存方法,为细胞治疗等临床实践提供优质细胞。方法:海藻酸微囊包埋鼠胚成纤维细胞(STO细胞)后用不含DMSO和FBS的冷冻保存液进行冷冻保存。,设四个对照组:添加10%DMSO和20%FBS的组、仅添加10%DMSO的组、仅添加20%FBS、DMSO和FBS均不添加组。在冷冻前后对各实验组细胞用台盼兰染色,进行细胞计数,计算细胞存活率,同时利用溴乙锭的二聚物(EthD)、钙黄绿素-AM(Calcein—AM)进行染色观察细胞的形态,且进一步验证细胞存活率;解冻复苏后用MTT法评估细胞的增殖速度和生长活力。结果:冷冻保存30天后对各组的细胞数量、细胞存活率、细胞形态和解冻复苏后细胞的生长活力进行比较发现,海藻酸微囊包埋冷冻组的细胞数、细胞存活率、细胞形态和生长活力均与添加DMSO和FBS的组之间无显著性差异,而与其它三个对照组呈显著性差异。结论:使用海藻酸微囊替代DMSO和FBS保存STO细胞,能有效的维持细胞形态、数量、存活率,同时不影响细胞的生长活力,从而建立了一个不含DMS0和FBS的高效冷冻保存方法。  相似文献   

7.
ABSTRACT: BACKGROUND: Mesenchymal stem cells (MSCs) are increasingly used as therapeutic agents as well as research tools in regenerative medicine. Development of technologies which allow storing and banking of MSC with minimal loss of cell viability, differentiation capacity, and function is required for clinical and research applications. Cryopreservation is the most effective way to preserve cells long term, but it involves potentially cytotoxic compounds and processing steps. Here, we investigate the effect of decreasing dimethyl sulfoxide (DMSO) concentrations in cryosolution by substituting with hydroxyethyl starch (HES) of different molecular weights using different freezing rates. Post-thaw viability, phenotype and osteogenic differentiation capacity of MSCs were analysed. RESULTS: The study confirms that, for rat MSC, cryopreservation effects need to be assessed some time after, rather than immediately after thawing. MSCs cryopreserved with HES maintain their characteristic cell surface marker expression as well as the osteogenic, adipogenic and chondrogenic differentiation potential. HES alone does not provide sufficient cryoprotection for rat MSCs, but provides good cryoprotection in combination with DMSO, permitting the DMSO content to be reduced to 5%. There are indications that such a combination would seem useful not just for the clinical disadvantages of DMSO but also based on a tendency for reduced osteogenic differentiation capacity of rat MSC cryopreserved with high DMSO concentration. HES molecular weight appears to play only a minor role in its capacity to act as a cryopreservation solution for MSC. The use of a 'straight freeze' protocol is no less effective in maintaining post-thaw viability of MSC compared to controlled rate freezing methods. CONCLUSION: A 5% DMSO / 5% HES solution cryopreservation solution using a 'straight freeze' approach can be recommended for rat MSC.  相似文献   

8.
Wheat (Triticum aestivum L. cv. Norstar) suspension cultures and regenerable calli initiated from immature embryos can be cryopreserved in liquid nitrogen temperature (–196°C) by slow freezing (0.5°C/min) in the presence of a mixture of DMSO and sucrose or sorbitol. Cold hardening or ABA treatment before cryopreservation increased the freezing resistance and improved the survival of wheat suspension culture in liquid nitrogen. Callus culture, established from immature embryos, prefrozen in 5% DMSO and 0.5M sorbitol survived liquid nitrogen storage and resumed plant regeneration after thawing. The results confirm the feasibility of long term preservation of wheat embryo callus by cryopreservation and retention of plant regeneration ability.Abbreviations ABA Abscisic acid - 2,4-D 2,4-Dichlorophenoxyacetic acid - DMSO Dimethylsulfoxide - LN Liquid nitrogen - TTC 2,3,5-triphenyltetrazolium chloride NRCC No. 23850.  相似文献   

9.
Encapsulation of pancreatic islets before transplantation enables survival and function in an immunocompetent recipient without immunosuppression. However, the insufficient availability of allogenic islet tissue is a major problem. One concept to overcome these shortcomings is the cryopreservation of microencapsulated allogenic islets, to allow their unlimited collection and use on demand. Therefore, this report outlines the development of a cryopreservation protocol for CD rat islets encapsulated in an alginate-based microcapsule-system. We determined RPMI-medium plus 10% FCS as freezing medium, equilibration at 0°C for 15 min with the cryoprotectant dimethyl sulfoxide (DMSO; final concentration 2.0M), and a stepwise removal of DMSO by sucrose dilution after thawing, as best protocol for cryopreservation of encapsulated islets. Importantly, the cryopreserved encapsulated islets showed post thawing in vitro an insulin increase upon a glucose challenge comparable to that of non-cryopreserved encapsulated islets. Moreover, a stable graft function without the need of immunosuppression was detected after transplantation of 2500 cryopreserved encapsulated CD rat islets in streptozotocin-diabetic Wistar rats. Finally, the glucose clearance rate during an IPGTT 4 weeks after transplantation was comparable to that of rats transplanted with non-cryopreserved encapsulated islets. In conclusion, our study demonstrates for the first time that cryopreservation of encapsulated rat islets is possible without substantial losses on graft function. Future studies will now have to carry on this approach to human islets, aiming to apply such a bioartificial pancreas consisting of cryopreserved encapsulated islets in humans.  相似文献   

10.
Human skin allografts can be preserved by different methods. In our clinical practice, human skin allografts are harvested on multi-organ and tissue donors, transferred at +4°C in Ringer Lactate, cryopreserved with 15% Glycerol and held in the vapor phase of a liquid nitrogen freezer until delivery to the burn center. The aim of this experimental study was to evaluate the impact of transport medium and cryoprotectant on the viability of human skin allografts. For this purpose, we compared skin samples harvested from 19 multi-organ and tissue donors with two different transport media and two different cryoprotectants. Viability was assessed by the MTT assay after harvesting at laboratory reception, during storage (at +4°C) at day 2 and day 7, and after cryopreservation and thawing. Histopathological analysis was performed for each MTT assay. Results indicate that, when stored at +4°C, skin retains more viability with RPMI, whereas Glycerol and DMSO are equivalent cryoprotectants regardless of the transport medium. In conclusion, our protocol could be improved by the utilization of RPMI as transport medium.  相似文献   

11.
The use of olfactory neuroepithelium neural progenitor cells for transplantation has attracted attention in the treatment of many neurological disorders, which require efficient recovery methods and cryopreservation procedures. The purpose of this study was to evaluate different cryopreservation techniques for neural progenitor cells derived from the olfactory neuroepithelium (ONe NPCs) in adult rats. Initially, we compared the survival rates of cryopreserved ONe NPCs treated with six different cryoprotectants: dimethylsulfoxide (DMSO), ethylene glycol (EG) and glycerol, each with or without 10% FBS and with two different storage periods in liquid nitrogen (-196 degrees C), specifically 3 days short-term storage and 3 months long-term storage. We assessed the recovery efficiency of ONe NPCs after freezing and thawing by viability testing and colony-forming assay as well as immunocytochemistry under different conditions. No significant difference in the survival rate was observed among these different cryoprotectants. With these protocols, ONe NPCs retained their multipotency and differentiated into glial (GFAP-positive), neuronal (NeuN-positive) and oligodendroglia (Galc-positive) cells. Collectively, our results imply that, under optimal conditions, ONe NPCs might be cryopreserved for periods of >3 months without losing their proliferative and multipotency activities.  相似文献   

12.
Preservation of pancreatic islets for long-term storage of islets used for transplantation or research has long been a goal. Unfortunately, few studies on long-term islet cryopreservation (1 month and longer) have reported positive outcomes in terms of islet yield, survival and function. In general, single cells have been shown to tolerate the cryopreservation procedure better than tissues/multicellular structures like islets. Thus, we optimized a method to cryopreserve single islet cells and, after thawing, reaggregated them into islet spheroids. Cryopreserved (CP) single human islet cells formed spheroids efficiently within 3–5 days after thawing. Approximately 79% of islet cells were recovered following the single-cell cryopreservation protocol. Viability after long-term cryopreservation (4 weeks or more) was significantly higher in the CP islet cell spheroids (97.4 ± 0.4%) compared to CP native islets (14.6 ± 0.4%). Moreover, CP islet cell spheroids had excellent viability even after weeks in culture (88.5 ± 1.6%). Metabolic activity was 4–5 times higher in CP islet cell spheroids than CP native islets at 24 and 48 h after thawing. Diabetic rats transplanted with CP islet cell spheroids were normoglycemic for 10 months, identical to diabetic rats transplanted with fresh islets. However, the animals receiving fresh islets required a higher volume of transplanted tissue to achieve normoglycemia compared to those transplanted with CP islet cell spheroids. By cryopreserving single cells instead of intact islets, we achieved highly viable and functional islets after thawing that required lower tissue volumes to reverse diabetes in rats.  相似文献   

13.
Channel catfish leucocytes cryopreserved with glycerol or dimethyl sulphoxide (DMSO) had significantly higher ( P <0.05) viability and recovery rates than did cells cryopreserved with methanol. After 7 days of frozen storage, a 24 to 27% reduction of viability was observed for cells cryopreserved with glycerol; a 25 to 43% reduction for cells frozen with DMSO, and a 67 to 100% reduction for cells frozen with methanol. The concentration of cryoprotectants affected the viability of cryopreserved cells significantly ( p <0.05). The viability reduction was 36% for cells frozen with 5% of cryoprotectants, 30% for cells frozen with 10% of cryoprotectants, and 49% for cells frozen with 15% of cryoprotectants. The viability of cells frozen at the slower rate (-2.7°C min−1) was significantly higher ( p <0.05) than that of cells frozen at the faster rate (-45°C min−1). Best results were obtained for cells cryopreserved with 10% of glycerol or DMSO and frozen at the slower rate. The chromosomes prepared from cells cryopreserved using this procedure were identical to those prepared from fresh cells, and to those reported in the literature for channel Catfish.  相似文献   

14.
A vitrification method enabled efficient cryopreservation of embryogenic tissue (ETs) of Norway spruce (Picea abies L.) at ?196 °C in liquid nitrogen (LN). Correctly formed, normal somatic embryos were generated from ETs that had been thawed after removal from LN. The pregrowth-dehydration method involved preculture of ETs with sucrose (0.25–1.00 M) in the presence or absence of 10 μM abscisic acid (ABA), followed by air-drying for 2 h and rapid freezing in LN. Pretreatment of ETs with both sucrose and ABA promoted ET growth after preculture and thawing more effectively than treatment with sucrose alone. Survival of ETs after thawing from LN using both sucrose and ABA was 54.4 % compared to pretreatment with sucrose alone which was 20 %. Addition of ABA in the preculture medium also improved the ability of ETs to form cotyledonary stage somatic embryos. The somatic embryos, which had normal shoot and root apices and the correct number of cotyledons, were indistinguishable from regenerants obtained from control cultures. Genetic analysis of control and cryopreserved ETs, as well as somatic embryos derived from cryopreserved ETs, indicated that the cryopreservation method had no effect on any of the five microsatellite loci (SpAGC1, SpAGC2, SpAGG3, SpAC1H8, and SpAC1F7) tested. The cryopreservation protocol outlined should enable the long-term storage of valuable clones of Norway spruce in LN, potentially for hundreds of years.  相似文献   

15.
The aim of this study was to determine the optimal conditions (effect of culture time before and after cryopreservation) for cryopreservation of specific pathogen-free pig islet cells. METHODS: (1) Glucose-induced insulin secretion by fresh islet cells cultured for 10 days was compared to that by islet cells cryopreserved 7 days after isolation and cultured 3 days after thawing. (2) Islet cells were cryopreserved 1, 7, or 14 days after isolation and cultured 3, 7, 14, or 21 days after thawing. Islet cell number, insulin content, and insulin response under perifusion tests were investigated. RESULTS: (1) Insulin response by cryopreserved islet cells was identical to that by fresh islet cells (basal/stimulation index: 2. 13 +/- 0.19 vs 2.17 +/- 0.16, n = 4, NS), although the amount of secreted insulin was reduced by 40% (area under the curve: 2136 +/- 198 pM/10(4) cells/180 min vs 3564 +/- 636 pM/10(4) cells/180 min, P = 0.104). (2) Cell number 6 days after thawing was reduced by 54, 40, and 63% when cryopreservations were carried out at D1, D7, and D14. (3) Insulin content in cultured or cryopreserved islet cells increased between 7 and 14 days of culture. (4) Whatever the culture time before and after cryopreservation, insulin secretion in response to glucose was maintained. The insulin release was the highest for islet cells cryopreserved 14 days after isolation and cultured 14 days after thawing (stimulation index: 6.19 +/- 2.68). CONCLUSIONS: SPF pig islet cells remained functional after cryopreservation in polyethylene glycol and it may be important to culture islet cells over 14 days before and after cryopreservation.  相似文献   

16.
Cryopreservation of primordial germ cells (PGCs) is a better alternative for the conservation of the diploid genome in fish until embryo cryopreservation is achieved. A good cryopreservation protocol must guarantee high survival rates but also absence of genetic damage. In this study, a cell toxicity test using several internal and external cryoprotectants was carried out. The best combination of cryoprotectants (DMSO 5 mol/L, ethylene glicol (EG) 1 mol/L, polyvinyl pyrrolidone (PVP) 4%) was used with and without antifreeze proteins (AFPs) at two different concentrations (10 mg/mL and 20 mg/mL) for cryopreservation trials. Different cryopreservation methods were used with single PGCs, genital ridges, and whole zebrafish embryos using cryovials, 0.5 mL straws, microcapsules, and microdrops. All embryos were obtained from the vasa EGFP zf45 transgenic line and viability was evaluated using trypan blue. High cell viability rates after cryopreservation in 0.5 mL straws were obtained (around 90%) and a decrease in viability was only observed when cells were cryopreserved in microcapsules and when AFP at 20 mg/mL was added to the freezing media. Genetic damage was determined by comet assay and was compared in cells cryopreserved in 0.5 mL straws and microcapsules (lowest viability rate). There were significantly more DNA strand breaks after cryopreservation in the cells cryopreserved without cryoprotectants and in those cryopreserved in microcapsules. Genetic damage in the cells cryopreserved with cryoprotectants in 0.5 mL straws was similar to fresh control samples, regardless of the concentration of AFP used. The decrease in PGC viability with the addition of AFP 20 mg/mL did not correlate with an increase in DNA damage. This study reported a successful method for zebrafish PGC cryopreservation that not only guarantees high cell survival but also the absence of DNA damage.  相似文献   

17.
CRYOPRESERVATION OF SEA URCHIN EMBRYOS AND SPERM   总被引:2,自引:0,他引:2  
A simple method for preserving live sea urchin embryos and sperm in liquid nitrogen (LN) wasdeveloped through the use of DMSO as a cryoprotective additive. Samples of late embryos in double test tubes were cooled to— I96°C by two-step freezing, first to — 76°C and then by plunging in LN. In the case of fertilized eggs, samples were previously frozen to — 40°C, at which temperature the samples were kept for 15 min; they were then transferred into LN. After preservation in LN for various lengths of time, samples in the double test tubes were thawed in water at 15°C. The post-thaw survival was more than 90% for late embryos, and about 10% for fertilized eggs. Difference in the length of the cryopreservation period did not affect survival. Post-thaw development in cryopreserved embryos often showed abnormalities in structure. Sperm with 1.5 M DMSO was successfully preserved in LN by a similar method to the one used for cryopreservation of late embryos. Fertilizability in cryopreserved sperm was complete, regardless of the length of the preservation period. Nearly all the eggs fertilized by cryopreserved sperm developed to normal plutei.  相似文献   

18.
I Kola  C Kirby  J Shaw  A Davey  A Trounson 《Teratology》1988,38(5):467-474
Vitrification of mouse oocytes adversely affected the subsequent developmental potential of embryos and fetuses derived from the fertilization of such oocytes after thawing. Only 5% of oocytes vitrified formed viable fetuses on the 15th day of gestation as compared to 47% in the controls. The incidence of chromosomally aneuploid zygotes, derived from cryopreserved oocytes, was approximately threefold higher than the controls irrespective of whether the oocytes were cryopreserved by vitrification or DMSO slow-freezing. Malformed fetuses were obtained from oocytes that had been vitrified as well as those that had been exposed to vitrification solutions only, whereas no malformed fetuses were obtained in oocytes slow-frozen by DMSO or fresh controls--thus demonstrating that the exposure of oocytes to the vitrification chemicals was responsible for the fetal malformations. The data in this study suggest that the vitrification technique should be cautiously applied to human oocyte cryopreservation. Furthermore, the data also demonstrate that the exposure of female gametes to carcinogenic and/or teratogenic chemicals may result in malformed embryos when such oocytes are subsequently fertilized.  相似文献   

19.
CY Yang  CY Pang  BZ Yang  RC Li  YQ Lu  XW Liang 《Theriogenology》2012,78(7):1437-1445
The objective of this study was to optimize cryopreservation conditions for buffalo in vitro produced (IVP) embryos. The in vitro fertilized (IVF) and somatic cell nuclear transferred (SCNT) blastocysts were vitrified with either 40% ethylene glycol (EG), 25% EG + 25% dimethylsulfoxide (DMSO), or 20% EG + 20% DMSO + 0.5 m sucrose, and the IVF blastocysts produced from abattoir-derived ovaries were also slow-frozen with either 10% EG or 0.05 m trehalose dehydrate + 1.8% EG + 0.4% BSA. Cryosurvival rates of blastocysts harvested on various days or at various developmental stages were also examined. In this study: (1) vitrification with 20% EG + 20% DMSO + 0.5 m sucrose had the best cryopreservation efficiency; (2) IVF and SCNT blastocysts had similar cryotolerance (P > 0.05); (3) after thawing, slow-frozen blastocysts reexpanded earlier than the vitrified blastocysts (P < 0.01); (4) cryosurvival rate of expanded blastocysts was higher than that of early blastocysts (P < 0.05); (5) cryosurvival rates of Days 5 to 7 blastocysts (Day 0 = day of IVF or SCNT) were higher than those of Days 8 to 9 blastocysts (P < 0.01); and (6) after embryo transfer, pregnancy rates for fresh and cryopreserved blastocysts were not different (P > 0.05). In conclusion, vitrification of Days 6 to 7 expanded blastocysts with 20% EG + 20% DMSO + 0.5 m sucrose was optimal for cryopreservation of buffalo IVP embryos.  相似文献   

20.
The endothelial loss provoked by the methods of vascular cryopreservation used at most human vessel banks is one of the main factors leading to the failure of grafting procedures performed using cryopreserved vessel substitutes. This study evaluates the effects of the storage temperature and thawing protocol on the endothelial cell loss suffered by cryopreserved vessels, and optimises the thawing temperature and protocol for cryopreserving arterial grafts in terms of that producing least endothelial loss. Segments of the common iliac artery of the minipig (n = 20) were frozen at a temperature reduction rate of 1 degrees C/min in a biological freezer. After storing the arterial fragments for 30 days, study groups were established according to the storage temperature (-80, -145 or -196 degrees C) and subsequent thawing procedure (slow or rapid thawing). Fresh vessel segments served as the control group. Once thawed, the specimens were examined by light, transmission, and scanning electron microscopy. The covered endothelial surface was determined by image analysis. Data for the different groups were compared by one way ANOVA. When cryopreservation at each of the storage temperatures was followed by slow thawing, the endothelial cells showed improved morphological features and viability over those of specimens subjected to rapid thawing. Rapidly thawed endothelial cells showed irreversible ultrastructural damage such as mitochondrial dilation and rupture, reticular fragmentation, and peripheral nuclear condensation. In contrast, slow thawing gave rise to changes compatible with reversible damage in a large proportion of the endothelial cells: general swelling, reticular dilation, mitochondrial swelling, and nuclear chromatin condensation. Gradually thawed cryopreserved arteries showed a lower proportion of damaged cells identified by the TUNEL method compared to the corresponding rapidly thawed specimens (p < 0.05, for all temperatures). In all the groups in which vessels underwent rapid thawing (except at -145 degrees C), significant differences (p < 0.05) in endothelial cover values were recorded with respect to control groups. Storage of cryopreserved vessels at -80 degrees C followed by rapid thawing led to greatest endothelial cell loss (61.36+/-9.06% covered endothelial surface), while a temperature of -145 degrees C followed by slow thawing was best at preserving the endothelium of the vessel wall (89.38+/-16.67% surface cover). In conclusion, storage at a temperature of -145 degrees C in nitrogen vapour followed by gradual automated thawing seems to be the best way of preserving the endothelial surface of the arterial cryograft. This method gives rise to best endothelial cell viability and cover values, with obvious benefits for subsequent grafting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号