首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.  相似文献   

2.
The rates of carboxylation, photophosphorylation and acetate incorporation have been compared in the intact and broken chloroplasts of Hydrilla verticillata Royle leaves in the presence and absence of certain inhibitors and metabolites. The intact chloroplasts showed low rates of photophosphorylation, high rates of carboxylation, and exhibited normal capacity for fatty acid biosynthesis. In broken chloroplasts a drastic decrease was observed in the rates of carboxylation and acetate incorporation. However, the rate of photophosphorylation was considerably increased. In the presence of light, inhibitors such as iodoacetamide, arsenite and sodium azide decreased the photophosphorylation rate. F-1,6-di-P and PGA stimulated CO2 fixation rate. In the absence of artificial light, inhibitors such as sodium arsenite, gluconate-6-phosphate, sodium azide and iodoacetamide decreased the rate of CO2 fixation. CoA, ATP, G-6-P, F-1,6-di-P Stimulated the synthesis of fatty acids. Exogenous supply of ADP. NADH, NADP and NADPH did not stimulate fatty acid biosynthesis probably because these compounds could not gain entry into the chloroplasts. Light was necessary for the in vitro fatty acid biosynthesis.  相似文献   

3.
Evidence for Two Distinct Forms of Fatty Acid Cyclooxygenase in Brain   总被引:1,自引:1,他引:1  
Abstract: The enzymatic metabolism of [14C]arachidonic acid (AA) was studied with microsomes prepared from rabbit medulla. Prostaglandin E2 (PGE2) levels, measured either by radiochemistry or radioimmunoassay, rose rapidly and abruptly plateaued within 5 min, while prostaglandin F2a (PGF2a) levels continued to rise for 30 min. The rapid termination of PGE2 biosynthesis was not the result of limited cofactor, substrate, or product feedback inhibition, nor was it due to PGE2-9-ketoreductase activity. Inhibition of the PGH2→ PGE2 isomerase by arachidonic acid or its metabolites could not explain the abrupt halt in PGE2 biosynthesis. Proof for two separate cyclooxygenases comes from our observation that a preincubation of the brain microsomes with unlabeled AA eliminated PGE2 biosynthesis while PGF2o production continued. Further evidence to suggest two cyclooxygenases in brain is derived from the observation that indomethacin inhibited PGE2 production at concentrations that did not affect PGF2a biosynthesis. These results suggest that one fatty acid cyclooxygenase is closely associated with PGH2→ PGE2 isomerase and readily undergoes autodestruction and the second cyclooxygenase is associated with a PGH2→ PGF2a reductase and is somewhat resistant to arachidonate-induced destruction and to nonsteroidal antiinflammatory agents.  相似文献   

4.
Control of Fatty Acid Synthesis in Bacteria   总被引:7,自引:5,他引:7  
When glycerol-requiring auxotrophs of Bacillus subtilis are deprived of glycerol, the synthesis of fatty acids continues at an apparent rate of 20 to 50% that of supplemented cultures. The newly synthesized fatty acids are not incorporated into phospholipid and accumulate as free fatty acids. These molecules undergo a much more rapid turnover than phospholipid fatty acids, and the rate of turnover is sufficient to indicate that the rate of fatty acid synthesis in glycerol-deprived cultures is similar to that in supplemented ones. The average chain length of the free fatty acids is greater than that of the phospholipid fatty acids. Cells deprived of required amino acids also show a diminution in the apparent rate of fatty acid synthesis; however, in this case, the fatty acids accumulate in phospholipid, and no increase of the free fatty acid fraction is observed. It is argued on the basis of these findings that the control of lipid synthesis does not operate at the level of transacylation but must act on one or more of the reactions of the fatty acid synthetase.  相似文献   

5.
Temperature-induced changes in the enzymes for fatty acid synthesis and desaturation were studied in developing soybean seeds (Glycine max L. var Williams 82). Changes were induced by culture of the seed pods for 20 hours in liquid media at 20, 25, or 35°C. Linoleoyl and oleoyl desaturases were 94 and 10 times as active, respectively, in seeds cultured at 20°C as those cultured at 25°C. Both desaturases had negligible activity in seeds cultured at 35°C compared to seeds cultured at 20°C. Though less dramatic, other enzymes also showed differences in activity after 20 hours in culture at 20, 25, or 35°C. Stearoyl-acyl carrier protein (ACP) desaturase and CDP-choline:diacylglycerol phosphorylcholine transferase were most active in preparations from 20°C cultures. Activities were twofold lower at 25°C and a further threefold lower in 35°C cultures. Cultures from 25 and 35°C had 60 and 40%, respectively, of the phosphorylcholine:CTP cytidylyl transferase activity present in cultures grown at 20°C. Fatty acid synthetase, malonyl-coenzyme A:ACP transacylase, palmitoyl-ACP elongation, and choline kinase were not significantly altered by culture temperature. These data suggest that the enzymes for fatty acid desaturation and phosphatidylcholine synthesis can be rapidly modulated in response to altered growth temperatures, while the enzymes for fatty acid synthesis and elongation are not.  相似文献   

6.
β-Ketoacyl-acyl carrier protein (ACP) synthetase II (KAS II) is one of three Escherichia coli isozymes that catalyze the elongation of growing fatty acid chains by condensation of acyl-ACP with malonyl-ACP. Overexpression of this enzyme has been found to be extremely toxic to E. coli, much more so than overproduction of either of the other KAS isozymes, KAS I or KAS III. The immediate effect of KAS II overproduction is the cessation of phospholipid synthesis, and this inhibition is specifically due to the blockage of fatty acid synthesis. To determine the cause of this inhibition, we examined the intracellular pools of ACP, coenzyme A (CoA), and their acyl thioesters. Although no significant changes were detected in the acyl-ACP pools, the CoA pools were dramatically altered by KAS II overproduction. Malonyl-CoA increased to about 40% of the total cellular CoA pool upon KAS II overproduction from a steady-state level of around 0.5% in the absence of KAS II overproduction. This finding indicated that the conversion of malonyl-CoA to fatty acids had been blocked and could be explained if either the conversion of malonyl-CoA to malonyl-ACP and/or the elongation reactions of fatty acid synthesis had been blocked. Overproduction of malonyl-CoA:ACP transacylase, the enzyme catalyzing the conversion of malonyl-CoA to malonyl-ACP, partially relieved the toxicity of KAS II overproduction, consistent with a model in which high levels of KAS II blocks access of the other KAS isozymes to malonyl-CoA:ACP transacylase.  相似文献   

7.
大豆饱和脂肪酸组分改良研究进展   总被引:3,自引:0,他引:3  
为了更好地满足消费者的需要,遗传改良豆油中脂肪酸含量已经取得很大进展,并有3个油分改良的大豆品种已经商品化,其油分中亚麻酸的含量已经从原来的8%降到了1%,油酸含量也已从25%增加到80%,棕榈酸从11%降到小于4%。传统育种和基因工程育种都是遗传改良大豆油的手段。阐述了遗传改良、基因型和表现型的选择等多方法对脂肪酸的影响,总结了大豆饱和脂肪酸组翻改良的主要进展。  相似文献   

8.
9.
10.
The fatty acid specificity of the B-lipase derived from Candida antarctica was investigated in the synthesis of esters of ethyl D-glucopyranoside. The specificity was almost identical with respect to straight-chain fatty acids with 10 to 18 carbon atoms. However, lower fatty acids such as hexanoic and octanoic acid and the unsaturated 9-cis-octadecenoic acid were found to be poor substrates of the enzyme. As a consequence of this selectivity, these fatty acids were accumulated in the unconverted fraction when ethyl D-glucopyranoside was esterified with an excess of a mixture of fatty acids. This accumulation can reduce the overall effectiveness of the process as the activity of the lipase was found to be reduced when exposed to high concentrations of short-chain fatty acids. Finally, using a simplified experimental set-up, the specificity of the C. antarctica B-lipase was compared to the specificity of lipases derived from C. rugosa, Mucor miehei, Humicola, and Pseudomonas. Apart from the C. rugosa lipase, which exhibited a very poor performance, all the enzymes showed a very similar specificity with respect to fatty acids longer than octanoic acid while only the C. antarctica B-lipase showed activity towards sort-chain fatty acids.  相似文献   

11.
The fatty acid specificity of the B-lipase derived from Candida antarctica was investigated in the synthesis of esters of ethyl D-glucopyranoside. The specificity was almost identical with respect to straight-chain fatty acids with 10 to 18 carbon atoms. However, lower fatty acids such as hexanoic and octanoic acid and the unsaturated 9-cis-octadecenoic acid were found to be poor substrates of the enzyme. As a consequence of this selectivity, these fatty acids were accumulated in the unconverted fraction when ethyl D-glucopyranoside was esterified with an excess of a mixture of fatty acids. This accumulation can reduce the overall effectiveness of the process as the activity of the lipase was found to be reduced when exposed to high concentrations of short-chain fatty acids. Finally, using a simplified experimental set-up, the specificity of the C. antarctica B-lipase was compared to the specificity of lipases derived from C. rugosa, Mucor miehei, Humicola, and Pseudomonas. Apart from the C. rugosa lipase, which exhibited a very poor performance, all the enzymes showed a very similar specificity with respect to fatty acids longer than octanoic acid while only the C. antarctica B-lipase showed activity towards sort-chain fatty acids.  相似文献   

12.
Unsaturated fatty acid auxotrophs of Eschericha coli have been divided into two distinct cistrons by extract complementation and genetic complementation based on abortive transduction. Lesions in one cistron result in the loss of the beta-hydroxydecanoyl thioester dehydrase which produces the first biosynthetic intermediate in unsaturated fatty acid formation. Evidence is presented which indicates that lesions in the second cistron result in the lack of a second enzyme specifically involved in the biosynthesis of unsaturated fatty acids.  相似文献   

13.
Lem NW  Stumpf PK 《Plant physiology》1984,74(1):134-138
In vitro fatty acid synthesis was examined in crude cell extracts, soluble fractions, and 80% (NH4)2SO4 fractions from Anabaena variabilis M3. Fatty acid synthesis was absolutely dependent upon acyl carrier protein and required NADPH and NADH. Moreover, fatty acid synthesis and elongation occurred in the cytoplasm of the cell. The major fatty acid products were palmitic acid (16:0) and stearic acid (18:0). Of considerable interest, both stearoyl-acyl carrier protein and stearoyl-coenzyme A desaturases were not detected in any of the fractions from A. variabilis. The similarities and differences in fatty acid synthesis between A. variabilis and higher plant tissues are discussed with respect to the endosymbiotic theory of chloroplast evolution.  相似文献   

14.
Thiolactomycin (TLM), an antibiotic from Nocardia sp. No. 2-200,inhibited fatty acid synthesis in Avena leaves, with the concentrationcausing 50% inhibition being 0.38µg/ml. This antibioticis more inhibitory to the elongation of palmitic to oleic acidthan to the de novo synthesis of palmitic acid in both spinachchloroplasts and Avena leaves, in contrast to the effect ofcerulenin which inhibits de novo synthesis but not fatty acidelongation. On the other hand, TLM is less inhibitory to furtherelongation of stearic acid to very long chain fatty acids inpea seeds. The inhibition rate decreased in the order of synthesisof arachidic, behenic and lignoceric acid. (Received December 26, 1986; Accepted April 24, 1987)  相似文献   

15.
Fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are key pathways involved in cellular energetics. Reducing equivalents from FAO enter OXPHOS at the level of complexes I and III. Genetic disorders of FAO and OXPHOS are among the most frequent inborn errors of metabolism. Patients with deficiencies of either FAO or OXPHOS often show clinical and/or biochemical findings indicative of a disorder of the other pathway. In this study, the physical and functional interactions between these pathways were examined. Extracts of isolated rat liver mitochondria were subjected to blue native polyacrylamide gel electrophoresis (BNGE) to separate OXPHOS complexes and supercomplexes followed by Western blotting using antisera to various FAO enzymes. Extracts were also subjected to sucrose density centrifugation and fractions analyzed by BNGE or enzymatic assays. Several FAO enzymes co-migrated with OXPHOS supercomplexes in different patterns in the gels. When palmitoyl-CoA was added to the sucrose gradient fractions containing OXPHOS supercomplexes in the presence of potassium cyanide, cytochrome c was reduced. Cytochrome c reduction was completely blocked by myxothiazol (a complex III inhibitor) and 3-mercaptopropionate (an inhibitor of the first step of FAO), but was only partially inhibited by rotenone (a complex I inhibitor). Although palmitoyl-CoA and octanoyl-CoA provided reducing equivalents to OXPHOS-containing supercomplex fractions, no accumulation of their intermediates was detected. In contrast, short branched acyl-CoA substrates were not metabolized by OXPHOS-containing supercomplex fractions. These data provide evidence of a multifunctional FAO complex within mitochondria that is physically associated with OXPHOS supercomplexes and promotes metabolic channeling.  相似文献   

16.
Many gram-negative bacteria synthesize N-acyl homoserine lactone autoinducer molecules as quorum-sensing signals which act as cell density-dependent regulators of gene expression. We have investigated the in vivo source of the acyl chain and homoserine lactone components of the autoinducer synthesized by the LuxI homolog, TraI. In Escherichia coli, synthesis of N-(3-oxooctanoyl)homoserine lactone by TraI was unaffected in a fadD mutant blocked in β-oxidative fatty acid degradation. Also, conditions known to induce the fad regulon did not increase autoinducer synthesis. In contrast, cerulenin and diazoborine, specific inhibitors of fatty acid synthesis, both blocked autoinducer synthesis even in a strain dependent on β-oxidative fatty acid degradation for growth. These data provide the first in vivo evidence that the acyl chains in autoinducers synthesized by LuxI-family synthases are derived from acyl-acyl carrier protein substrates rather than acyl coenzyme A substrates. Also, we show that decreased levels of intracellular S-adenosylmethionine caused by expression of bacteriophage T3 S-adenosylmethionine hydrolase result in a marked reduction in autoinducer synthesis, thus providing direct in vivo evidence that the homoserine lactone ring of LuxI-family autoinducers is derived from S-adenosylmethionine.  相似文献   

17.
Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 ± 4 g/l, 42 ± 7 g/l and 18 ± 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

18.
By using microautoradiography, light-stimulated utilization of dissolved amino acids for natural marine phytoplankton assemblages was demonstrated. The <2-μm-size (diameter) picoplankton, known to be a dominant fraction of marine primary production, revealed a widespread capability for this process. Autofluorescent (chlorophyll a-containing) picoplankton and some larger phytoplankton from diverse oceanic locations, as well as isolates of the representative cyanobacterial picoplankton Synechococcus spp. (WH7803, WH8101), showed light-stimulated incorporation of amino acids at trace concentrations. Dark-mediated amino acid utilization was dominated by nonfluorescent bacterial populations. Among autofluorescent picoplankton, light-stimulated exceeded dark-mediated amino acid incorporation by 5 to 75%; light-stimulated amino acid incorporation was only partially blocked by the photosystem II inhibitor 3(3,4-dichloro-phenyl)-1,1-dimethy-lurea (2 × 10-5 M), suggesting a photoheterotrophic incorporation mechanism. Parallel light versus dark incubations with glucose and mannitol indicated a lack of light-stimulated utilization of these nonnitrogenous compounds. Since marine primary production is frequently nitrogen limited, light-mediated auxotrophic utilization of amino acids and possibly other dissolved organic nitrogen (DON) constituents may represent exploitation of the relatively large DON pool in the face of dissolved inorganic nitrogen depletion. This process (i) increases the efficiency of DON retention at the base of oceanic food webs and (ii) may in part be responsible for relatively high rates of picoplankton production under conditions of chronic dissolved inorganic nitrogen limitation. Picoplanktonic recycling of organic matter via this process has important ramifications with respect to trophic transfer via the “microbial loop.”  相似文献   

19.
greenhouse experiment with factorial arrangement based on randomized complete block design with four replications was conducted in 2015 to evaluate the effects of salicylic acid (SA) (1 mM) and jasmonic acid (JA) (0.5 mM) on oil accumulation and fatty acid composition of soybean oil (Glycine max L.) under salt stress (Non-saline, 4, 7, and 10 dS/m NaCl). Oil percentage of soybean seeds declined, while oil content per seed enhanced with increasing seed filling duration. Foliar application of SA improved oil content per soybean seed at different stages of development under all salinity levels. Although JA treatment enhanced seed oil percentage, oil yield of these plants decreased as a result of reduction in seed yield per plant. In contrast, the highest oil yield was recorded for SA treated plants, due to higher seed yield. Salinity had no significant effects on percentage of palmitic acid and stearic acid, but treatment with JA significantly reduced stearic acid percentage. Oleic acid content of seeds increased, but percentages of linoleic acid, linolenic acid and unsaturation index (UI) of soybean oil decreased with increasing salinity. Foliar application of SA and JA improved oil quality of soybean seeds by reducing oleic acid and enhancing linoleic acid, linolenic acid contents and UI. Exogenous application of SA had the most beneficial effects on soybean seeds due to enhancing oil yield and quality under saline and non-saline conditions.  相似文献   

20.
Fatty acid synthesis from acetate in extracts of Saccharomyces cerevisiae strain LK2G12 was shown to be stimulated by alpha-glycerophosphate and citrate, and by a number of compounds related to them. Magnesium was shown to stimulate fatty acid synthesis from acetyl-coenzyme A but not from malonyl-coenzyme A, thus indicating the site of stimulation of fatty acid synthesis to be the acetyl-coenzyme A step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号