首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prior to the first oviposition, a receptivity centre, perhaps neurosecretory cells in the brain, controls the female's acceptance of courting males. In L. maderae this centre is affected by starvation. A brief exposure to food can induce mating but is inadequate for oöcyte development. Before the first ovulation starvation has no effect on receptivity in N. cinerea.

In N. cinerea mechanical stimulation caused by the firm insertion of the spermatophore in the bursa copulatrix releases stimuli via the nerve cord to the brain which render the female unreceptive and, at the same time, increases the activity of the corpora allata resulting in rapid development of the oöcytes.

The mechanical presence of the oötheca in the uterus also has two principal effects. Like spermatophore insertion, it inhibits mating. But its effect on the corpora allata is inhibitory, rather than stimulatory, and, consequently, the oöcytes remain underveloped for almost the entire gestation period. The effectiveness of inhibitory stimulation from the stretched uterus depends upon the period in the reproductive cycle in which it occurs-i.e. on the physiological state of the female. In N. cinerea uterine stretching inhibits mating and oöcyte development after oviposition or during gestation but is not effective when exerted during the first pre-oviposition period. In P. surinamensis, uterine stretching does not inhibit the corpora allata prior to the first ovulation but does prevent oöcyte development during gestation.

In fed L. maderae and N. cinerea there appears to be a synergistic action of nutrition and mating in controlling the rate of oöcyte development. Mating (mechanical) and feeding (chemical) stimuli are both usually required for activating the corpora allata to their fullest extent so that the oöcytes mature at their maximum rate. There is some indication that mating stimuli in N. cinerea and L. maderae are effective in further stimulating the corpora allata only if the corpora allata have reached a certain level of activity, if activating stimuli have begun to occur in the brain, or if the mating stimulus occurs in combination with nutritional factors. Thus, the corpora allata in starved virgin females of N. cinerea become sufficiently active so that some yolk is deposited in the oöcytes but these oöcytes do not mature; mating is effective in further stimulating the endocrine glands in these starved females and oviposition occurs in about the normal period. In starved virgins of L. maderae the corpora allata are virtually inactive and yolk is not deposited in the oöcytes; mating has no effect on oöcyte development in starved females. D. punctata differs from both the above species in that the corpora allata in the virgin female usually remain inactive whether she feeds or starves. Mating stimuli alone can activate the corpora allata, in fed or starved females, and consequently the oöcytes mature.  相似文献   


2.
The implantation of active corpora allata into intact Locusta females during growth accelerates pre-vitellogenic oöcyte growth and vitellogenesis. Localised stimulation of yolk deposition follows the implantation of active corpora allata between the ovarioles demonstrating a gonadotrophic rôle for the corpus allatum hormone. Electrocoagulation of the median neurosecretory cells of the brain prevents vitellogenesis whilst pre-vitellogenic oöcyte growth occurs normally. Implantation of active corpora allata into females with ablated cerebral neurosecretory cells promotes vitellogenesis in a proportion of test animals although mature oöcytes are never produced.It is suggested that the rôle of the median neurosecretory cells during egg development in Locusta is primarily concerned with the activation and maintenance of activity of the corpora allata. The corpus allatum hormone acts both metabolically and gonadotrophically.  相似文献   

3.
Basal oöcyte length, corpus allatum volume and “in vitro” juvenile hormone biosynthesis were measured in isolated and crowded Locusta migratoria females at selected times during the first gonotrophic cycle. Using gas chromatography-mass spectrometry with selected ion monitoring, the juvenile hormone titre in the haemolymph of isolated and crowded females was also determined 1 and 4 days after fledging. The rate of oöcyte growth was more rapid in isolated females and a significant (P < 0.01) difference in mean length was apparent as early as 3 days after fledging. This early manifestation of a difference in rate of oöcyte growth was correlated with a difference in haemolymph juvenile hormone titre between isolated and crowded females. Whilst there was no difference in titre 1 day after fledging, by day 4 the juvenile hormone titre in isolated females was found to be approximately twice that in crowded females. There was no significant difference in the rates of juvenile hormone biosynthesis by corpora allata from isolated and crowded females on days 0 through to 6 after fledging. On day 8, however, the rates of juvenile hormone biosynthesis of corpora allata from isolated females were very high (mean value = 136 pmol/h/pair) and were significantly (P < 0.002) greater than those of corpora allata from crowded females. Day 8 was also the point in the first gonotrophic cycle at which the difference in the mean basal oöcyte length in isolated and crowded females was at a maximum. The mean volume of corpora allata from isolated females was greater than that of corpora allata from crowded females at all points at which measurements were taken during the first gonotrophic cycle.  相似文献   

4.
Juvenile hormone (JH) synthesis by the corpora allata of gregarious and solitarious phase females of Schistocerca gregaria was determined in vitro during the penultimate and last stadia as well as during the first gonotrophic period of adults. Generally, the corpora allata of solitarious females showed higher rates of JH synthetic activity. In addition, in adult females there was a temporal difference between the corpora allata activities of gregarious and solitarious locusts, the latter exhibiting relatively higher rates of JH synthesis early in the first gonotrophic period. The corpus allatum volumes of solitarious females were also generally larger than those of their gregarious counterparts; there was no synchrony between fluctuations in JH synthetic activity and changes in corpus allatum volume in either phase.The early onset of relatively high JH synthetic rates in solitarious females was correlated with the early detection, by rocket immunoelectrophoresis, of vitellogenin in the haemolymph and vitellin in the oöcytes. Vitellogenin appeared in the haemolymph on day 4 in solitarious females and on day 6 in gregarious females and vitellin appeared in the oöcytes on days 6 and 8 respectively. Oöcyte length at which vitellogenesis was first detected was 1.8 mm for gregarious and 1.3 mm for solitarious females. However, despite the accelerated onset of both vitellogenin synthesis and uptake, oöcyte maturation time of solitarious females was longer. In both gregarious and solitarious females, vitellogenin titres increased until oöcytes reached a length of about 4 mm and declined thereafter. Vitellin content of ovaries increased proportionately to oöcyte growth until they attained a length of 5.0 mm. The subsequent increase in length of oöcytes to maturity is attributed to postvitellogenic growth, possibly by hydration.  相似文献   

5.
Electrostimulation of the medial neurosecretory cells of day-1 adult female Locusta migratoria resulted in a significant enhancement of juvenile hormone biosynthesis by the corpora allata within 2–3 days of the operation, as determined by a radiochemical assay for juvenile hormone biosynthesis. This elevation in the rate of juvenile hormone biosynthesis was also reflected in basal oöcyte length, with the oöcytes of stimulated animals significantly larger than the sham-operated animals. Radio-frequency cautery of the cerebral axonal tracts of the medial neurosecretory cells prevented this enhancement in juvenile hormone biosynthesis and in basal oöcyte growth in both stimulated and sham-operated animals.Stimulation of the lateral neurosecretory cells resulted in a slight elevation in rates of juvenile hormone biosynthesis 2 days after the operation. However, after cautery of the medial cell tracts, a significant elevation in juvenile hormone biosynthesis was observed 1 and 2 days after stimulation. Basal oöcyte length in stimulated animals differed significantly from sham-operated animals only on day 6. Cautery of the medial cell tracts again attenuated oöcyte growth. Our results suggest that the medial neurosecretory cells are the source of an allatotropin that can be released by electrostimulation. This substance appears to operate directly on the corpus allatum, causing a change in the juvenile hormone biosynthetic machinery.  相似文献   

6.
The corpora allata of castrated females of Nauphoeta grow only very slightly and do not reach a volume greater than that of the glands of normal females during gestation. These small corpora allata are, however, active and are responsible for the synthesis of vitellogenin (female specific protein) in large amounts. Besides vitellogenin the other haemolymph proteins are also synthesized and accumulated in the haemolymph in much higher concentrations than in normal females. Implanted oöcytes grow in castrated as well as in normal females at about the same rate until the tenth day of the oöcyte maturation period. Thereafter they only grow in castrated females. If castrated and normal females are decapitated, their protein content decreases. At the same time the growth stimulating capacity of their haemolymph decreases at a much faster rate. If oöcytes are implanted in castrated and decapitated females after 4 days they cannot grow any more although the vitellogenin titre of the haemolymph is still much higher than it is at any time in normal females. It can be concluded that vitellogenin alone cannot induce oöcyte growth and that juvenile hormone is necessary as well for vitellogenin synthesis as for its incorporation into the oöcytes. However, in insects rich in vitellogenin juvenile hormone leads to a more rapid oöcyte growth than in insects containing only small amounts of this protein.  相似文献   

7.
Adult mated females of the viviparous cockroach Diploptera punctata are moderately sensitive to precocenes. Oöcyte growth is inhibited and oviposition is delayed in insects topically treated with precocene II or precocene III. C16 juvenile hormone release by corpora allata of precocene-treated insects is markedly inhibited when compared to corpora allata of acetone-treated controls. Electron microscopy of the corpora allata reveals that precocene treatment results in a disorganisation of the intracellular organelles. Topically applied precocene II reaches a high concentration in the haemolymph (0.5 mM 2 hr after topical application of 250 μg). C16 juvenile hormone release by isolated corpora allata is inhibited by precocenes in vitro; half-maximal inhibition over a 3 hr period is obtained at 0.4 mM precocene II. In vitro inhibition of corpora allata by precocene II concentrations higher than 1 mM rapidly destroys the glands as evidenced by electron microscopy (total disintegration of cellular organelles) and by the virtual cessation of C16 juvenile hormone synthesis by the corpora allata. Inhibition of C16 juvenile hormone release by precocene is time-dependent and is not reversible over the short-term incubation in vitro. This inhibition does not appear to be related to the spontaneous activity of the glands in vitro, and it can be reduced by two epoxidase inhibitors. Precocenes are pro-allatocidins in this species: they are bioactivated within the corpora allata to cytotoxic epoxides.  相似文献   

8.
The search for myotropic peptide molecules in the brain, corpora cardiaca, corpora allata suboesophageal ganglion complex of Locusta migratoria using a heterologous bioassay (the isolated hindgut of the cockroach, Leucophaea maderae) has been very rewarding. It has lead to the discovery of 21 novel biologically active neuropeptides. Six of the identified Locusta peptides show sequence homologies to vertebrate neuropeptides, such as gastrin/cholecystokinin and tachykinins. Some peptides, especially the ones belonging to the FXPRL amide family display pleiotropic effects. Many more myotropic peptides remain to be isolated and sequenced. Locusta migratoria has G-protein coupled receptors, which show homology to known mammalian receptors for amine and peptide neurotransmitters and/or hormones. Myotropic peptides are a diverse and widely distributed group of regulatory molecules in the animal kingdom. They are found in neuroendocrine systems of all animal groups investigated and can be recognized as important neurotransmitters and neuromodulators in the animal nervous system. Insects seem to make use of a large variety of peptides as neurotransmitters/neuromodulators in the central nervous system, in addition to the aminergic neurotransmitters. Furthermore quite a few of the myotropic peptides seem to have a function in peripheral neuromuscular synapses. the era in which insects were considered to be “lower animals” with a simple neuroendocrine system is definitely over. Neural tissues of insects contain a large number of biologically active peptides and these peptides may provide the specificity and complexity of intercellular communications in the nervous system.  相似文献   

9.
The factors responsible for the initiation of a second oöcyte maturation cycle were investigated by measuring oöcyte growth, vitellogenin titre, and corpus allatum activity after injection of juvenile hormone and/or removal of the egg-case from pregnant females and by performing ovary and corpus allatum transplant experiments.Egg-case removal in late pregnancy results in immediate oöcyte growth, whereas in early pregnancy oöcyte growth is resumed only after a lapse of time, even after injection of juvenile hormone. This, however, induces an immediate increase in the haemolymph vitellogenin titre. A single injection of 2 or 10 μg of juvenile hormone II first stimulates some oöcyte growth after this lapse of time and later activates the corpora allata, which in turn leads to completion of oöcyte maturation. A repeat injection of 10 μg stimulates continuous oöcyte growth without activating the corpora allata. In the presence of an egg case, activation of the corpora allata is suppressed, even after injection of 2 μg of juvenile hormone III, and the oöcytes do not grow. Injection of higher doses stimulates oöcyte growth and leads to expulsion of the egg case in up to 95% of the females. This, however, is not a direct consequence of the increase in size of the ovaries. Ovary transplant experiment show that in young pregnant females the second generation of oöcyte is not yet competent for growth and that ovaries which are competent can mature in young pregnant females, treated with juvenile hormone, whose egg case has been removed.The results are summarized in a model demonstrating the various factors involved in regulating corpus allatum activity in oöcyte maturation and pregnancy and after application of juvenile hormone. We prepose that the corpus allatum activating effect of exogenous juvenile hormone is mediated by the growing oöcyte and that this activation can be suppressed by the continuous presence of exogenous juvenile hormone.  相似文献   

10.
The corpora allata are inhibited during pregnancy in ovoviviparous Eublaberus posticus, and yolk is not deposited in the basal oöcytes for the entire or almost the entire gestation period.Precocious oöcyte development occurs if the oötheca is removed but this can be prevented by substituting a plastic oötheca for the true egg case in the uterus. Implantation of a uterus containing an oötheca into the abdomen of a female whose oötheca is removed does not prevent precocious oöcyte development even though many of the eggs in the implant grow and stretch the donor uterus. These experiments argue against the hypothesis that an ‘agent’ from the uterine eggs or stretched uterus inhibits the activity of the corpora allata (CA), and supports the hypothesis that inhibition from the uterus is mechanical.Cyclical activity of neurosecretory cells in certain abdominal ganglia in one species of ovoviviparous cockroach has been correlated with the cyclical inhibition of the oöcytes during pregnancy. Mechanoreceptors are found in the uteri of several ovoviviparous species including Eublaberus.In Eublaberus transecting the nerve cord between various ganglia in pregnant females only results in a marked decrease in the percentage of famales showing precocious oöcyte development when the nerves posterior to the sixth abdominal ganglion are severed. However, the results are the same if these nerves are severed after removing the oötheca. It is suggested that pressure of the oötheca on mechanoreceptors in the uterus, or cessation of pressure (after removal of the oötheca), result in sensory information being transmitted to the last abdominal ganglion which affect the CA, perhaps indirectly by controlling the activity of the neurosecretory cells in various abdominal ganglia.  相似文献   

11.
The Egyptian locust, Anacridium aegyptium, has four protocerebral neurosecretory centres: the A to B neurosecretory cells of the pars intercerebralis (the A cells are rich in fuchsinophil material and the B cells are devoid of fuchsinophil neurosecretion), the voluminous C neurosecretory cells poor in neurosecretion, and the median sub-ocellar neurosecretory cells.From September to the beginning of January, imaginal diapause is characterized by an accumulation of the median neurosecretion in the pars intercerebralis-corpora cardiaca system, by small corpora allata, and, in the female, by a stop in oöcyte development although the male's sexual activity is still not altered. Allatectomy suppresses neither the male's sexual behaviour nor its fecundity. From January, the increase of the photoperiod causes a release of the median neurosecretion in both sexes, an increase of the volume of the corpora allata, and breaks ovarian diapause.In autumn, the implantation of the male's or female's corpora allata of Anacridium does not stimulate ovarian growth of diapausing females. On the contrary, the implantation of corpora allata or of pars intercerebralis or of corpora cardiaca of Locusta migratoria migratorioides (locust without diapause) causes ovarian development of the diapausing females of Anacridium. Thus, in the two sexes of the Egyptian locust, the corpora allata are inactive during the female ovarian diapause. The imaginal diapause of Anacridium affects both sexes (stocking of median neurosecretion, arrest of the corpora allata). If diapause does not seem to affect the male's development, it is because its sexual activity is free from the pars intercerebralis and corpora allata.The corpora allata of Anacridium show a sexual dimorphism in the active adult: they are smaller in the male and have more mitosis in the female. An explanation of this dimorphism is advanced.  相似文献   

12.
Severance of nervi corporis allati I (NCA I) in day-1 adult female Locusta migratoria resulted in a significant decrease and a loss of the characteristic pattern of juvenile hormone biosynthesis by the corpora allata as determined by radiochemical assay. This decrease in the rate of juvenile hormone biosynthesis was not reflected in basal oöcyte growth. The lengths of the oöcytes were the same in NCA-transectioned and in the sham-operated females. The effect of severance of both NCA I and NCA II on juvenile hormone biosynthesis and ovarian maturation was similar to the effect of NCA I severance only.Rate of juvenile hormone biosynthesis by corpora allata of fourth-instar larvae exhibited a maximum of activity in the middle of the stadium. The severance of NCA I early in the stadium resulted in a very low rate of juvenile hormone biosynthesis and a disappearance of this peak. In NCA I-transectioned larvae, the duration of the stadium was significantly increased although larvae moulted into normal fifth instar.  相似文献   

13.
Oögenesis and the physiological activity of the corpora allata were studied in adult females of the Egyptian locust (Anacridium aegyptium), in ovarian diapause, after electrical stimulation in vivo of the pars intercerebralis. This stimulation provokes (1) a decrease in the quantity of fuchsinophilic material present in the median neurosecretory cell bodies and in the internal cardiac tract, (2) an increase in the physiological activity of the corpora allata (measured by its chromatropic effect on larvae of Locusta), and (3) rupture of the ovarian diapause (advance of maturation of the oöcytes and oviposition by 5 months, and initiation of the ovarian cycle).In the control animals, the same electrical stimulations of various regions of the central nervous system (tritocerebrum, first ganglion of the abdominal cord) have no effect on these phenomena.In allatectomized females, electrical stimulations of the pars intercerebralis are followed by a slight growth of oöcytes, without a deposit of yellow vitellus. The diapause is not broken. Section of the allatocardiac nerves or rupture of the allatocardiac and allato-suboesophageal nervous connexions do not change the physiological state of the corpora allata. In the case of females in which the corpora allata have been disconnected, electrical stimulations of the pars intercerebralis succeed in activating the corpora allata and breaking the ovarian diapause. The aggregate of these results confirms that in locusts the control of the brain over the physiological activity of the corpora allata is above all neuroendocrine.  相似文献   

14.
The sensitivity of an apterygote insect to precocene II was investigated for the first time in females of Thermobia domestica. Topical applications of this compound, which has been said to possess anti-juvenile hormone activity, were carried out at various times in the postecdysial period of a reproductive cycle, during intense vitellogenesis in the terminal oöcytes. The effects of treatment were observed on mortality, fecundity, insemination and also on the ultrastructure of corpora allata; they depend on the dose used and on the day of treatment. A single application of 10 μg/insect at the beginning of the postecdysial period induces antigonadotropic effects in females reared both with and without males. The effects of precocene add to those of non-insemination, which also elicits inhibition of oöcyte maturation. In addition, the cytotoxic action of precocene, leading to degeneration of the corpora allata, which is most probably irreversible, was demonstrated.  相似文献   

15.
The effect of starvation on the synthesis of C16 juvenile hormone (JH) and the growth of terminal oöcytes was assessed in Schistocerca americana gregaria at two times during adult life: before activation of the corpora allata and during the first gonotrophic cycle. In both groups, starvation resulted in a decline in JH synthesis within 2–3 days and rates of synthesis remained low throughout the experimental period. The growth rate of oöcytes which were not vitellogenic at the time of starvation was depressed whereas the percentage of resorption of vitellogenic oöcytes increased dramatically with starvation. Although the percentage of resorption increased in animals with vitellogenic oöcytes, some mature oöcytes were produced, particularly in animals in which the oöcytes were greater than 5 mm in length at the time of starvation. This suggests that oöcyte maturation can be divided into two distinct phases—an early phase of vitellogenesis associated with high rates of JH synthesis and a late phase, in oöcytes greater than 5 mm, associated with much lower rates of JH synthesis.Stimulation of JH synthesis by farnesenic acid in 5-day starved animals resulted in high rates of JH synthesis, indicating that starvation did not appreciably alter the enzymic activities of the final two stages in JH synthesis. Thus rate limitation did not occur at these stages.Feeding of 5-day starved animals resulted in a transient increase in the rate of JH synthesis. However, rates of JH synthesis and oöcyte growth remained subnormal throughout the observation period, suggesting that the effects of starvation cannot be entirely reversed by feeding. Thus starvation may decrease the reproductive potential of the females.  相似文献   

16.
飞行对粘虫体内甘油酯积累与咽侧体活性的影响   总被引:2,自引:0,他引:2  
研究了粘虫Mythimna separata (Walker)成虫飞行对甘油酯的恢复、保幼激素的滴度及飞行肌降解的影响, 结果表明,不同日龄粘虫的飞行活动对其能源物质的积累及保幼激素分泌产生不同的影响。1日龄蛾的飞行对粘虫这两方面产生的影响最大,其飞行个体能源物质的积累明显高于未飞行的对照个体; 3日龄飞行个体的能源物质积累与对照相当; 但5日龄飞行个体则很难达到对照水平。1日龄飞行个体咽侧体活性在36 h后明显高于对照,60 h后已是对照的10倍,108 h达到其峰值; 3日龄飞行个体咽侧体的活性稍高于对照,但差别不显著; 5日龄飞行个体的咽侧体活性则稍低于对照。不同日龄飞行对飞行肌的降解也产生不同的影响。1日龄飞行个体的飞行肌在飞行后6 天已经明显低于对照。3、5日龄的飞行活动对其飞行肌降解的影响不明显。因此推测,粘虫咽侧体活化的关键时期可能在羽化后1~3 天之间。  相似文献   

17.
Female receptivity and sex pheromone production are controlled by different mechanisms. In B. fumigata females the corpora allata control pheromone production. The female's pheromone releases courtship behaviour in the male; he raises his wings exposing his tergum and apparently releases a pheromone. The receptive female is attracted to the male and mounts and ‘feeds’ on his tergum. The mounting and feeding behaviour, which is indicative of female receptivity, is not directly controlled by the corpora allata.

Receptivity in N. cinerea and L. maderae is determined by some event, presumably in the brain, which occurs at about the same time as the onset of activity of the corpora allata. It is suggested that the neurosecretory system is involved in acceptance of the male by the female.  相似文献   


18.
We have found that whether a female German cockroach, Blattella germanica (L.), is kept alone or in the presence of another female has a major impact on how fast it reproduces and how much it eats. By the sixth day of adulthood, females paired since adult eclosion had substantially larger o?cytes than did females isolated during the same time, and females paired with intact females, or with ones rendered incapable of feeding, consumed more rat chow in the first six days of adulthood than did isolated females. The stimulatory effect of pairing on reproduction was, however, partially independent of feeding because the o?cytes of solitary and paired females differed in size on day 6 even when they were given, and had consumed, the same amount of food. This result was confirmed with analysis of covariance using the total food intake of a female as the covariate in the analysis. A female's social condition probably influenced the development of its o?cytes by affecting the quantity of juvenile hormone synthesized by its corpora allata. The corpora allata of paired females produced more hormone than did those of isolated ones, even when all females had consumed an equivalent amount of food. Moreover, females treated with a juvenile hormone analog, fenoxycarb, reproduced more quickly than identically reared and fed control females, showing that juvenile hormone could influence reproduction independently of feeding. We conclude that both group rearing and food intake accelerate o?cyte development by diminishing the brain's inhibition on the synthesis of juvenile hormone.  相似文献   

19.
Summary

Corpora allata from 8-day-old female Locusta migratoria, during the phase of yolk deposition, exhibit high rates of C-16 juvenile hormone (JH) biosynthesis. The effect of different potential factors which may be involved in the regulation of corpora allata activity is reported. The biosynthetic activity of corpora allata was determined by radiochemical assay.

In maturing females, no changes in corpora allata activity are detected during one daily cycle. Starvation reduces JH biosynthesis only 3 days after the beginning of the food deprivation. Suppression of the median neurosecretory material by electrocoagulation of the internal cardiaca tract (TCC-I) does not disturb JH biosynthesis whereas the transection of the allata I nerve fibres (NCA-I) or the electrocoagulation of the lateral neurosecretory pericarya results in a rapid decline of JH biosynthesis. These data indicate that the median and lateral allatotropins are different, and that only the lateral neurosecretory material exerts an allatostimulating action on corpora allata at the time of vitellogenesis. The corpora allata response to the median allatotropin changes during oocyte growth. C-16 JH and/or 20-hydroxyecdysone treatments in vitro (addition in the culture medium) and in vivo (injection in female) do not influence JH production in our experimental conditions.  相似文献   

20.
The corpora allata in adult Loreyi leafworms Leucania loreyi (Lepidoptera: Noctuidae) exhibit sexual dimorphism. The male possesses right and left corpora allata of about the same size. Each gland is composed of a cluster of approximately 40 semi-transparent, spherical, isolated cells held together by fine tracheae and nerve fibers. The largest cell diameter found in male glands was 203 pm. In contrast, the female gland cells and clusters are much smaller. The largest dimensions of one whole female gland cluster were 452 μm in length and 280 μm in width. Using bilateral and unilateral larval allatectomy, we confirmed that the adult isolated cell type glands develop ontogenetically from larval capsular type glands. Ultrastructural study re- vealed many similarities between the subcellular structures of the isolated cell type glands of L. loreyi and the more common capsular gland reported by others. These similarities include very large numbers of mitochondria, abun- dant whorled smooth endoplasmic reticulum, irregularly shaped nuclei, Golgi bodies, and free ribosomes. Compared with the corpora allata of 3- to 9-day-old adults, the glands of 1-day-old adults possessed much less smooth endoplasmic reticulum. The gland cells in females usually have more neurosecretory nerve endings, less-abundant stacked smooth endoplasmic reticulum, and less- defined interdigitations than the gland cells in males. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号