首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carvedilol, a new beta-blocker with antioxidant properties, has been shown to be cardioprotective in experimental models of myocardial damage. We investigated whether carvedilol protects against experimental autoimmune myocarditis (EAM) because of its suppression of inflammatory cytokines and its antioxidant properties. We orally administered a vehicle, various doses of carvedilol, racemic carvedilol [R(+)-carvedilol, an enantiomer of carvedilol without beta-blocking activity], metoprolol, or propranolol to rats with EAM induced by porcine myosin for 3 wk. Echocardiographic study showed that the three beta-blockers, except R(+)-carvedilol, suppressed left ventricular fractional shortening and decreased heart rates to the same extent. Carvedilol and R(+)-carvedilol, but not metoprolol or propranolol, markedly reduced the severity of myocarditis at the two different doses and suppressed thickening of the left ventricular posterior wall in rats with EAM. Only carvedilol suppressed myocardial mRNA expression of inflammatory cytokines and IL-1beta protein expression in myocarditis. In addition, carvedilol and R(+)-carvedilol decreased myocardial protein carbonyl contents and myocardial thiobarbituric acid-reactive substance products in rats with EAM. The in vitro study showed that carvedilol and R(+)-carvedilol suppressed IL-1beta production in LPS-stimulated U937 cells and that carvedilol and R(+)-carvedilol, but not metoprolol or propranolol, suppressed thiobarbituric acid-reactive substance products in myocardial membrane challenged by oxidative stress. It was also confirmed that probucol, an antioxidant, ameliorated EAM in vivo. Carvedilol protects against acute EAM in rats, and the superior cardioprotective effect of carvedilol compared with metoprolol and propranolol may be due to suppression of inflammatory cytokines associated with the antioxidant properties in addition to the hemodynamic modifications.  相似文献   

2.
We investigated whether carvedilol protects against experimental autoimmune myocarditis (EAM) attributing to antioxidant properties. Acute EAM was induced by porcine cardiac myosin in Lewis rats. We orally administered a vehicle, various dosages of carvedilol, metoprolol, or propranolol to rats with EAM for 3 weeks. Three beta-blockers decreased heart rates to the same extent. Carvedilol, but not metoprolol or propranolol, markedly reduced the severity of myocarditis at the two different dosages. Only carvedilol decreased the myocardial protein carbonyl contents, and also decreased the myocardial thiobarbituric acid reactive substance products in rats with EAM. Accordingly, carvedilol protects against acute EAM in rats, and this superior cardioprotective effect of carvedilol to metoprolol and propranolol may be due to the antioxidant properties in addition to the hemodynamic modifications.  相似文献   

3.
Angiotensin-converting enzyme-2 (ACE-2) is a homolog of ACE that preferentially forms angiotensin-(ANG)-1-7 from angiotensin II (ANG II). We investigated the cardioprotective effects of telmisartan, a well-known angiotensin receptor blockers (ARBs) against experimental autoimmune myocarditis (EAM). EAM was induced in Lewis rats by immunization with porcine cardiac myosin. The rats were divided into two groups and treated with telmisartan (10 mg/kg/day) or vehicle for 21 days. Myocardial functional parameters were significantly improved by treatment with telmisartan compared with vehicle-treated rats. Telmisartan lowered myocardial protein expressions of NADPH oxidase subunits 3-nitrotyrosine, p47phox, p67 phox, Nox-4 and superoxide production significantly than vehicle-treated rats. In contrast myocardial protein levels of ACE-2, ANG 1-7 mas receptor were upregulated in the telmisartan treated group compared with those of vehicle-treated rats. The myocardial protein expression levels of tumor necrosis factor receptor (TNFR)-associated factor (TRAF)-2, C/EBP homologous protein (CHOP) and glucose-regulated protein (GRP) 78 were decreased in the telmisartan treated rats compared with those of vehicle-treated rats. In addition, telmisartan treatment significantly decreased the protein expression levels of phospho-p38 mitogen-activated protein kinase (MAPK), phospho-JNK, phospho-ERK and phospho (MAPK) activated protein kinase-2 than with those of vehicle-treated rats. Moreover, telmisartan significantly decreased the production of proinflammatory cytokines, myocardial apoptotic markers and caspase-3 positive cells compared with those of vehicle-treated rats. Therefore, we suggest that telmisartan was beneficial protection against heart failure in rats, at least in part by suppressing inflammation, oxidative stress, ER stress as well as signaling pathways through the modulation of ACE2/ANG1-7/Mas receptor axis.  相似文献   

4.
Upregulation of thioredoxin (TRX) expression in giant cell myocarditis in rats   总被引:12,自引:0,他引:12  
To examine the possible involvement of a redox regulating mechanism in the pathogenesis of immune-mediated myocarditis, myocarditis was induced by immunization of porcine cardiac myosin in rats and immunohistochemistry and Western blot for thioredoxin (TRX) were performed. Immunohistochemistry for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nuclear factor kappa-B (NF-kappaB) was also performed. TRX was upregulated in the acute stage, but not in the chronic stage, and the expression was correlated with the severity of the disease. Damaged myocytes were strongly immunostained for 8-OHdG and NF-kappaB. Thus, TRX may be specifically induced by acute inflammatory stimuli, and the development of acute immune-mediated myocarditis may be regulated by the cellular redox state via TRX.  相似文献   

5.
In this study, we tested the hypothesis that MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one; edaravone), a novel free radical scavenger, protects against acute experimental autoimmune myocarditis (EAM) in rats by the radical scavenging action associated with the suppression of cytotoxic myocardial injury. Recent evidence suggests that oxidative stress may play a role in myocarditis. We administered MCI-186 intraperitoneally at 1, 3, and 10 mg.kg(-1).day(-1) to rats with EAM for 3 wk. The results were compared with untreated rats with EAM. MCI-186 treatment did not affect hemodynamics. MCI-186 treatment (3 and 10 mg.kg(-1).day(-1)) reduced the severity of myocarditis as assessed by comparing the heart-to-body weight ratio and pathological scores. Myocardial interleukin-1beta (IL-1beta)-positive cells and myocardial oxidative stress overload with DNA damage in rats with EAM given MCI-186 treatment were significantly less compared with those of the untreated rats with EAM. In addition, MCI-186 treatment decreased not only the myocardial protein carbonyl contents but also the myocardial thiobarbituric acid reactive substance products in rats with EAM. The formation of hydroxyl radicals in MCI-186-treated heart homogenates was decreased compared with untreated heart homogenates. Furthermore, cytotoxic activities of lymphocytes of rats with EAM treated with MCI-186 were significantly lower compared with those of the untreated rats with EAM. Hydroxyl radicals may be involved in the development of myocarditis. MCI-186 protects against acute EAM in rats associated with scavenging hydroxyl free radicals, resulting in the suppression of autoimmune-mediated myocardial damage associated with reduced oxidative stress state.  相似文献   

6.
An important role of redox regulation in myocardial diseases and heart failure has been postulated. Thioredoxin (TRX) is a redox-regulating protein. Recent studies indicated a possible association between plasma TRX concentrations and the severity of heart failure. Accordingly, we investigated the myocardial expression of TRX in patients with myocarditis and cardiomyopathies. Four cases of hypertrophic cardiomyopathy (HCM), 10 of dilated cardiomyopathy (DCM), 6 of myocarditis, and 5 of controls were studied. Right and left ventricular endomyocardial biopsy samples were obtained at the diagnostic cardiac catheterization. The samples were processed for immunohistological staining for TRX, which was done by the indirect immunoperoxidase technique. 8-hydoxy-2-deoxyguanosine (8-OHdG), one of the major DNA base-modified products, was also detected for an established marker for oxidative stress. TRX immunoreactivity was none or trivial in control specimens. Positive TRX staining was found in 6 cases; 3 in active myocarditis and 3 in DCM. The positive staining was found in infiltrating cells and damaged myocytes in the perinecrotic lesions. Damaged myocytes were also positive for 8-OHdG. All the 3 cases of DCM positive for TRX stain showed severe left ventricular hypertrophy on electrocardiogram and highly elevated left ventricular end-diastolic pressure (> 24 mmHg), suggesting the overload of oxidative stress by hemodynamic impairment. Myocardial TRX was upregulated in myocarditis and cardiomyopathies with active necrotic stage associated with DNA damage, which may reflect the oxidative stress overload in hemodynamically uncontrolled status.  相似文献   

7.
Recent works have shown the importance of reduction/oxidation (redox) regulation in various biological phenomena. Thioredoxin (TRX) is one of the major components of the thiol reducing system and plays multiple roles in cellular processes such as proliferation, apoptosis, and gene expression. To investigate the molecular mechanism of TRX action, we used a yeast two-hybrid system to identify TRX-binding proteins. One of the candidates, designated as thioredoxin-binding protein-2 (TBP-2), was identical to vitamin D(3) up-regulated protein 1 (VDUP1). The association of TRX with TBP-2/VDUP1 was observed in vitro and in vivo. TBP-2/VDUP1 bound to reduced TRX but not to oxidized TRX nor to mutant TRX, in which two redox active cysteine residues are substituted by serine. Thus, the catalytic center of TRX seems to be important for the interaction. Insulin reducing activity of TRX was inhibited by the addition of recombinant TBP-2/VDUP1 protein in vitro. In COS-7 and HEK293 cells transiently transfected with TBP-2/VDUP1 expression vector, decrease of insulin reducing activity of TRX and diminishment of TRX expression was observed. These results suggested that TBP-2/VDUP1 serves as a negative regulator of the biological function and expression of TRX. Treatment of HL-60 cells with 1alpha, 25-dihydroxyvitamin D(3) caused an increase of TBP-2/VDUP1 expression and down-regulation of the expression and the reducing activity of TRX. Therefore, the TRX-TBP-2/VDUP1 interaction may be an important redox regulatory mechanism in cellular processes, including differentiation of myeloid and macrophage lineages.  相似文献   

8.
9.
Thioredoxin (TRX) is a 12-kDa redox (reduction/oxidation)-active protein that has a highly conserved site (-Cys-Gly-Pro-Cys-) and scavenges reactive oxygen species. Here we examined whether exogenously administered TRX modulated airway hyperresponsiveness (AHR) and airway inflammation in a mouse asthma model. Increased AHR to inhaled acetylcholine and airway inflammation accompanied by eosinophilia were observed in OVA-sensitized mice. Administration of wild-type but not 32S/35S mutant TRX strongly suppressed AHR and airway inflammation, and upregulated expression of mRNA of several cytokines (e.g., IL-1alpha, IL-1beta, IL-1 receptor antagonist, and IL-18) in the lungs of OVA-sensitized mice. In contrast, TRX treatment at the time of OVA sensitization did not improve AHR or airway inflammation in OVA-sensitized mice. Thus, TRX inhibited the asthmatic response after sensitization, but did not prevent sensitization itself. TRX and redox-active protein may have clinical benefits in patients with asthma.  相似文献   

10.
We investigated the effects of acute diazepam (DZP) administration on thiobarbituric acid‐reactive substance (TBARS) levels, protein carbonyl content, and on the activities of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase in the brain of rats. Additionally, we investigated the antioxidant role of chronic pretreatment with simvastatin on the effects provoked by DZP. Simvastatin was administered (1 or 10 mg/kg by oral gavage) for 30 days. On the 30th day of treatment, groups were randomized and DZP was administered (0.5 or 1.0 mg/kg by intraperitoneal injection). Control groups received saline. Results showed that DZP enhanced TBARS levels and protein carbonyl content and altered enzymatic activity in the brain of rats. Simvastatin prevented most of the alterations caused by DZP on the oxidative stress parameters. Data indicate that DZP administration causes an oxidative imbalance in the brain areas studied; however, in the presence of simvastatin, some of these alterations in oxidative stress were prevented.  相似文献   

11.
12.
Mitochondria play a central role in the initiation of apoptosis, which is regulated by various factors such as ATP synthesis, reactive oxygen species, redox status, and outer membrane permeabilization. Disruption of chicken thioredoxin 2 (Trx2), a mitochondrial redox-regulating protein, results in apoptosis in DT40 cells. To investigate the mechanism of this apoptosis, we prepared transfectants expressing control (DT40-TRX2-/-), human thioredoxin 2 (TRX2) (DT40-hTRX2), or redox-inactive TRX2 (DT40-hTRX2CS) in conditional Trx2-deficient DT40 cells containing a tetracycline-repressible Trx2 gene. Production of ATP was not significantly changed by down-regulation of Trx2 expression. The generation of reactive oxygen species was enhanced by the down-regulation of Trx2 expression in DT40-TRX2-/-. Unexpectedly, the change was blocked in both DT40-hTRX2 and DT40-hTRX2CS cells. The down-regulation of Trx2 expression caused the release of cytochrome c and apoptosis-inducing factor on day 3, and apoptosis on day 5. These changes were also suppressed in both DT40-hTRX2 and DT40-hTRX2CS cells, suggesting that TRX2 regulates mitochondrial outer membrane permeabilization and apoptosis by redox-active site cysteine-independent mechanisms. The down-regulation of Trx2 expression caused a decrease in the protein level of Bcl-xL on day 3, whereas the protein level of Bcl-2 did not change until day 4, and the mRNA level of Bcl-xL was unchanged. The decrease in Bcl-xL was not blocked by a caspase 3 inhibitor but blocked in both DT40-hTRX2 and DT40-hTRX2CS. These findings indicate a link between the redox active site cysteine-independent action of TRX2 and the level of Bcl-xL in the regulation of apoptosis.  相似文献   

13.
It has been reported that exercise induces oxidative stress and causes adaptations in antioxidant defences. The aim of this study was to determine the adaptations of lymphocytes to the oxidative stress induced by an exhaustive exercise. Nine voluntary male subjects participated in the study. The exercise was a cycling mountain stage (171.8 km), and the cyclists took a mean of 283 min to complete it. Blood samples were taken the morning of the cycling stage day, after overnight fasting, and 3 h after finishing the stage. We determined the blood glutathione redox status (GSSG/GSH), lymphocyte antioxidant enzyme activities and superoxide dismutase (SOD) levels; the plasma and lymphocyte vitamin E levels; the serum lactate dehydrogenase (LDH) and creatine kinase (CK) activities and urate levels; the plasma carotene and malonaldehyde (MDA) levels; and the lymphocyte carbonyl index. The cycling stage induced significant increases in blood-oxidized (glutathione/GSSG), plasma MDA and serum urate levels. The exercise also produced increases in CK and LDH serum activities. The mountain cycling stage induced significant increases in lymphocyte vitamin E levels, glutathione peroxidase and glutathione reductase activities as well as increased SOD activity and protein levels. The protein carbonyl levels increased significantly in lymphocytes after the stage. In conclusion, in spite of increasing antioxidant defences in response to the oxidative stress induced by the exhaustive exercise, lymphocyte oxidative damage was produced after the stage as demonstrated by the increased carbonyl index even in very well trained athletes.  相似文献   

14.
Thioredoxin (TRX) is a 13 kDa protein with antioxidant effect and redox regulating functions. Peroxynitrite is a strong oxidizing and nitrating agent which can react with all classes of biomolecules. In the present study, we focused on the association between TRX and nitrotyrosine, which served as a marker of peroxynitrite formation, in the neonatal hypoxia-ischemia (HI) rat brain. At 4-16 h after HI, the immunoreactivity for TRX was diminished in the injured region in the cortex and striatum, whereas nitrotyrosine immunoreactivity was enhanced. In contrast, around the injured region, TRX immunoreactivity was enhanced in survival neurons at 4-24 h after HI, while the immunoreactivity for nitrotyrosine was mostly not detected. Northern blot analysis showed increased TRX mRNA induction in the cerebral hemisphere ipsilateral to the carotid ligation from 4-24 h after HI but not in the contralateral hypoxic hemisphere. These findings suggest that production of peroxynitrite is involved in HI brain injury, and that induced TRX plays a neuroprotective role against oxidative stress resulting from HI.  相似文献   

15.
The micronutrient iron is an essential component that plays a role in many crucial metabolic reactions. The peptide hormone hepcidin is thought to play a central role in iron homeostasis and its expression is induced by iron overloading and inflammation. Recently, hepcidin has been reported to be expressed also in the heart; however, the kinetics of altered hepcidin expression in diseases of the heart remain unknown. In this study, we examined cardiac expression of hepcidin in rat experimental autoimmune myocarditis (EAM), human myocarditis and rat acute myocardial infarction (AMI). In rat EAM and AMI hearts, hepcidin was expressed in cardiomyocytes; ferroportin, which is a cellular iron exporter bound by hepcidin, was also expressed in various cells. Analysis of the time course of the hepcidin to cytochrome oxidase subunit 6a (Cox6a)2 expression ratio showed that it abruptly increased more than 100-fold in hearts in the very early phase of EAM and in infarcted areas 1 day after MI. The hepcidin/Cox6a2 expression ratio correlated significantly with that of interleukin-6/γ-actin in both EAM and AMI hearts (r=0.781, P<.0001 and r=0.563, P=.0003). In human hearts with histological myocarditis, the ratio was significantly higher than in those without myocarditis (0.0400±0.0195 versus 0.0032±0.0017, P=.0045). Hepcidin is strongly induced in cardiomyocytes under myocarditis and MI, conditions in which inflammatory cytokine levels increase and may play an important role in iron homeostasis and free radical generation.  相似文献   

16.
Accumulating evidence indicates that angiotensin-converting enzyme 2 (ACE2) plays a critical role in cardiovascular homeostasis, and its altered expression is associated with major cardiac and vascular disorders. The aim of this study was to evaluate the regulation of vascular function and assess the vascular redox balance in ACE2-deficient (ACE2-/y) animals. Experiments were performed in 20–22 week-old C57BL/6 and ACE2-/y male mice. Evaluation of endothelium-dependent and -independent relaxation revealed an impairment of in vitro and in vivo vascular function in ACE2-/y mice. Drastic reduction in eNOS expression at both protein and mRNA levels, and a decrease in NO concentrations were observed in aortas of ACE2-/y mice in comparison to controls. Consistently, these mice presented a lower plasma and urine nitrite concentration, confirming reduced NO availability in ACE2-deficient animals. Lipid peroxidation was significantly increased and superoxide dismutase activity was decreased in aorta homogenates of ACE2-/y mice, indicating impaired antioxidant capacity. Taken together, our data indicate, that ACE2 regulates vascular function by modulating nitric oxide release and oxidative stress. In conclusion, we elucidate mechanisms by which ACE2 is involved in the maintenance of vascular homeostasis. Furthermore, these findings provide insights into the role of the renin-angiotensin system in both vascular and systemic redox balance.  相似文献   

17.
Effects of the prooxidant delta-aminolevulinic acid (ALA) and the antioxidant melatonin (MEL) were investigated in the male Syrian hamster Harderian gland (HG). Rodent Harderian glands are highly porphyrogenic organs, which may be used as model systems for studying damage by delta-aminolevulinic acid and its metabolites, as occurring in porphyrias. Chronic administration of delta-aminolevulinic acid (2 weeks) markedly decreased activities of the porphyrogenic enzymes delta-aminolevulinate synthase (ALA-S) and delta-aminolevulinate dehydratase (ALA-D) and of the antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR) and catalase (CAT), whereas porphobilinogen deaminase (PBG-D) remained unaffected. This treatment led to increased lipid peroxidation (LPO) and oxidatively modified protein (protein carbonyl) as well as to morphologically apparent tissue damage. Melatonin also caused decreases in delta-aminolevulinate synthase, delta-aminolevulinate dehydratase, superoxide dismutase, glutathione reductase and catalase. Despite lower activities of antioxidant enzymes, lipid peroxidation and protein carbonyl were markedly diminished. The combination of delta-aminolevulinic acid and melatonin led to approximately normal levels of delta-aminolevulinate dehydratase, glutathione reductase, catalase and protein carbonyl, and to rises in superoxide dismutase and porphobilinogen deaminase activities; lipid peroxidation remained even lower than in controls and the appearance of the tissue revealed a protective influence of melatonin. These results suggest that melatonin may have profound effects on the oxidant status of the Harderian gland.  相似文献   

18.
The aim of this study was to investigate acute variations in antioxidant defense systems in the intestinal mucosa after abdominal radiation exposure and the role played by radiation-induced inflammation in these variations. Antioxidant defense systems of mouse small intestinal mucosa were studied at 6 h and 4 days after abdominal radiation exposure. Superoxide dismutases, glutathione peroxidases, catalase, metallothioneins and thioredoxins were followed in terms of mRNA expression, protein expression and enzyme activities. Dexamethasone was administered to investigate the relationship between variations in mucosal antioxidant capacity and radiation-induced inflammation. Six hours after exposure, only mitochondrial-associated antioxidant systems were induced (the superoxide dismutase and thioredoxin 2). Four days after exposure, during the inflammatory phase, superoxide dismutases were decreased and modulations of the second line of the antioxidant network were also observed: Catalase was decreased and glutathione peroxidases and metallothioneins were induced. Dexamethasone treatment modulated only glutathione peroxidase expression and did not influence either metallothionein or superoxide dismutase expression. Our findings provide direct in vivo evidence that antioxidant mechanisms of the small intestinal mucosa were not markedly mobilized during the very acute tissue radiation response. During the radiation-induced acute inflammatory response, the antioxidant capacity appeared to be dependent on inflammatory status to a certain extent.  相似文献   

19.
The host inflammatory response appears to be an important contributor to the pathogenesis of human viral respiratory illness. Virus-induced oxidative stress appears to mediate an early phase of elaboration of the proinflammatory cytokine interleukin-8 by respiratory epithelial cells. The purpose of these studies was to determine if virus-induced alterations in either the expression or function of antioxidant enzymes contributes to the cellular oxidative stress following rhinovirus challenge. The activities of Mn superoxide dismutase (MnSOD), catalase and glutathione peroxidase (GPX) were not significantly changed by rhinovirus challenge. CuZn superoxide dismutase (CuZnSOD) activity six hours after challenge was 2.55 ±0.56 U/mg protein in rhinovirus-challenged cells compared to 1.16 ±0.54 U/mg protein in control cells ( p =0.029). This increased activity was associated with a concomitant increase in CuZnSOD mRNA and protein concentration. These data suggest that rhinovirus-induced changes in the host cell redox state that result in the early elaboration of interleukin-8 are not mediated by inhibition of either the expression or function of these antioxidant enzymes.  相似文献   

20.
The host inflammatory response appears to be an important contributor to the pathogenesis of human viral respiratory illness. Virus-induced oxidative stress appears to mediate an early phase of elaboration of the proinflammatory cytokine interleukin-8 by respiratory epithelial cells. The purpose of these studies was to determine if virus-induced alterations in either the expression or function of antioxidant enzymes contributes to the cellular oxidative stress following rhinovirus challenge. The activities of Mn superoxide dismutase (MnSOD), catalase and glutathione peroxidase (GPX) were not significantly changed by rhinovirus challenge. CuZn superoxide dismutase (CuZnSOD) activity six hours after challenge was 2.55 &#45 0.56 U/mg protein in rhinovirus-challenged cells compared to 1.16 &#45 0.54 U/mg protein in control cells ( p =0.029). This increased activity was associated with a concomitant increase in CuZnSOD mRNA and protein concentration. These data suggest that rhinovirus-induced changes in the host cell redox state that result in the early elaboration of interleukin-8 are not mediated by inhibition of either the expression or function of these antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号