首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three closely related molecular human immunodeficiency virus type 1 (HIV-1) clones, with differential neutralization phenotypes, were generated by cloning of an NcoI-BamHI envelope (env) gene fragment (HXB2R nucleotide positions 5221 to 8021) into the full-length HXB2 molecular clone of HIV-1 IIIB. These env gene fragments, containing the complete gp120 coding region and a major part of gp41, were obtained from three different biological clones derived from a chimpanzee-passaged HIV-1 IIIB isolate. Two of the viruses thus obtained (4.4 and 5.1) were strongly resistant to neutralization by infection-induced chimpanzee and human polyclonal antibodies and by HIV-1 IIIB V3-specific monoclonal antibodies and weakly resistant to soluble CD4 and a CD4-binding-site-specific monoclonal antibody. The third virus (6.8) was sensitive to neutralization by the same reagents. The V3 coding sequence and the gp120 amino acid residues important for the discontinuous neutralization epitope overlapping the CD4-binding site were completely conserved among the clones. However, the neutralization-resistant clones 4.4 and 5.1 differed from neutralization-sensitive clone 6.8 by two mutations in gp41. Exchange experiments confirmed that the 3' end of clone 6.8 (nucleotides 6806 to 8021; amino acids 346 to 752) conferred a neutralization-sensitive phenotype to both of the neutralization-resistant clones 4.4 and 5.1. From our study, we conclude that mutations in the extracellular portion of gp41 may affect neutralization sensitivity to gp120 antibodies.  相似文献   

2.
Site-specific mutagenesis was used to introduce amino acid substitutions at the asparagine codons of four conserved potential N-linked glycosylation sites within the gp120 envelope protein of human immunodeficiency virus (HIV). One of these alterations resulted in the production of noninfectious virus particles. The amino acid substitution did not interfere with the synthesis, processing, and stability of the env gene polypeptides gp120 and gp41 or the binding of gp120 to its cellular receptor, the CD4 (T4) molecule. Vaccinia virus recombinants containing wild-type or mutant HIV env genes readily induced syncytia in CD4+ HeLa cells. These results suggest that alterations involving the second conserved domain of the HIV gp120 may interfere with an essential early step in the virus replication cycle other than binding to the CD4 receptor. In long-term cocultures of a T4+ lymphocyte cell line and colon carcinoma cells producing the mutant virus, revertant infectious virions were detected. Molecular characterization of two revertant proviral clones revealed the presence of the original mutation as well as a compensatory amino acid change in another region of HIV gp120.  相似文献   

3.
To study the intracellular transport and biological properties of the human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein (TM; gp41), we constructed a truncated envelope gene in which the majority of the coding sequences for the surface glycoprotein (SU; gp120) were deleted. Transient expression of this truncated env gene in primate cells resulted in the biosynthesis of two proteins with M(r)s of 52,000 and 41,000, respectively. Immunofluorescence studies with antibodies to the HIV-1 TM protein indicated that the intracellular and surface localization of these proteins were indistinguishable from those of the native HIV-1 gp120-gp41 complex. These results indicate that the oligosaccharide processing and cell surface transport of the HIV-1 TM protein were not dependent on the presence of the receptor binding subunit, gp120. Syncytium formation was readily detected upon expression of the deleted HIV-1 env gene into COS and CD4+ HeLa cell lines, suggesting that in the absence of gp120, the TM protein retained biological activity. This observation was confirmed by infection of primate and mouse cell lines with a recombinant vaccinia virus (vvgp41) expressing the truncated HIV-1 env gene. These results strongly suggest that (i) the two biological activities of the HIV-1 envelope glycoprotein can occur independently and (ii) the association of the two glycoprotein subunits may restrict the fusion activity of the transmembrane component to CD4+ cells.  相似文献   

4.
Improved antigenicity of the HIV env protein by cleavage site removal   总被引:25,自引:0,他引:25  
The HIV env glycoprotein mediates virus infection and cell fusion through an interaction with the CD4 molecule present at the surface of T4+ lymphocytes. Although env presents a major antigenic target, vaccinia recombinants expressing env elicit low titres of anti-env antibody (Kieny et al., Bio/Technology, 4, 790-795, 1986). To delimit the functional domains of env and to improve the immunogenicity of the vaccinia recombinants we constructed variants expressing env proteins in which the site permitting cleavage of the gp160 precursor to yield gp120 and gp41 was removed, the gp120 and gp41 moieties separated or in which the signal sequence and hydrophobic domains were replaced by equivalents from rabies virus G. Analysis of variants revealed that the gp120 moiety is alone capable of interacting with CD4 and of provoking aggregation of T4+ lymphocytes, whereas cell-associated gp41 liberated by gp160 cleavage was essential for cell fusion. The identity of the signal and transmembrane zones however appeared unimportant. Although removal of the consensus sequence permitting cleavage of gp160 prevented syncytium formation but not aggregation of T4+ lymphocytes, significant cleavage continued to take place. Removal of a second potential cleavage site blocked gp160 cleavage. The live viruses were examined for immunogenicity: recombinant 1139 which lacks both putative cleavage sites was found to elicit a 10-fold higher antibody response in experimental animals than the parental recombinant.  相似文献   

5.
The mature envelope glycoproteins of mouse mammary tumor virus (gp52 and gp36) were isolated by reversed-phase high-pressure liquid chromatography. The N-terminal amino acid sequence of gp36 was determined for 28 residues. The C-terminal amino acid sequences of gp52 and gp36 were determined by carboxypeptidase digestion. The N-terminal amino acid sequence of gp52 has been reported previously (L. O. Arthur et al., J. Virol. 41:414-422, 1982). These data were aligned with the predicted amino acid sequence of the env gene product obtained by translation of the DNA sequence (S. M. S. Redmond and C. Dickson, Eur. Mol. Biol. Org. J. 2:125-131, 1983). The amino acid sequences of the mature viral proteins were in agreement with the predicted amino acid sequence of the env gene product over the regions of alignment. This alignment showed the sites of proteolytic cleavages of the env gene product leading to the mature viral envelope glycoproteins. The N-terminal amino acid sequence of gp52 starts at residue 99 of the predicted structure indicating proteolytic cleavage of a signal peptide. A dipeptide (Lys-Arg) is excised between the C-terminus of gp52 and the N-terminus of gp36. The C-terminal amino acid sequence of gp36 is identical to the sequence predicted by the codons immediately preceding the termination codon for the env gene product. The data show that there is no proteolytic processing at the C-terminal of the murine mammary tumor virus env gene product and that the env gene coding region extends into the long terminal repeat.  相似文献   

6.
The effects of C-terminal and internal deletions on the synthesis, transport, biological properties, and antigenicity of the human immunodeficiency virus type 1 envelope protein were determined. A family of recombinant vaccinia viruses that express N-terminal overlapping env proteins of 204, 287, 393, 502 (full-length gp120), 635, 747, and 851 (full-length gp160) amino acids was constructed. All of the proteins were detected in intra- and extracellular forms which differed in the extent of glycosylation. The 747- and 851-amino-acid proteins were cleaved, were expressed on the surface of infected cells, and bound CD4. The 635-amino-acid env protein was cleaved inefficiently, and both the precursor and product were secreted, indicating absence of the transmembrane sequence. The 635- as well as the 502-amino-acid protein, which was also largely secreted, could still bind CD4. Unexpectedly, the 393-amino-acid protein was anchored in the plasma membrane, but neither it nor smaller proteins bound to soluble CD4. When amino acids at the gp120-gp41 junction were deleted, proteolytic cleavage of gp160 did not occur. Nevertheless, gp160 was inserted into the plasma membrane and bound soluble CD4. The predominant conserved B-cell epitopes were mapped to gp41 and the C terminus of gp120, whereas cytotoxic T-cell epitopes were distributed throughout the length of the glycoproteins.  相似文献   

7.
To examine the role of the glycans of human immunodeficiency virus type 1 transmembrane glycoprotein gp41, conserved glycosylation sites within the env sequence (Asn-621, Asn-630, and Asn-642) were mutated to Gln. The mutated and control wild-type env genes were introduced into recombinant vaccinia virus and used to infect BHK-21 or CD4+ CEM cells. Mutated gp41 appeared as a 35-kDa band in a Western blot (immunoblot), and it comigrated with the deglycosylated form of wild-type gp41. Proteolytic cleavage of the recombinant wild-type and mutant forms of the gp160 envelope glycoprotein precursor was analyzed by pulse-chase experiments and enzyme-linked immunosorbent assay: gp160 synthesis was similar whether cells were infected with control or mutated env-expressing recombinant vaccinia virus, but about 10-fold less cleaved gp120 and gp41 was produced by the mutated construct than the control construct. The rates of gp120-gp41 cleavage at each of the two potential sites appeared to be comparable in the two constructs. By using a panel of antibodies specific for gp41 and gp120 epitopes, it was shown that the overall immunoreactivities of control and mutated gp41 proteins were similar but that reactivity to epitopes at the C and N termini of gp120, as present on gp160 produced by the mutated construct, was enhanced. This was no longer observed for cleaved gp120 in supernatants. Both gp120 proteins, from control and mutated env, were expressed on the cell surface under a cleaved form and could bind to membrane CD4, as determined by quantitative immunofluorescence assay. In contrast, and despite sufficient expression of env products at the cell membrane, gp41 produced by the mutated construct was unable to induce membrane fusion. Therefore, while contradictory results reported in the literature suggest that gp41 individual glycosylation sites are dispensable for the bioactivity and conformation of env products, it appears that such is not the case when the whole gp41 glycan cluster is removed.  相似文献   

8.
Identification of the residues in human CD4 critical for the binding of HIV   总被引:52,自引:0,他引:52  
The CD4 molecule is a T cell surface glycoprotein that interacts with high affinity with the envelope glycoprotein of the human immunodeficiency virus, HIV, thus serving as a cellular receptor for this virus. To define the sites on CD4 essential for binding to gp120, we produced several truncated, soluble derivatives of CD4 and a series of 26 substitution mutants. Quantitative binding analyses with the truncated proteins demonstrate that the determinants for high affinity binding lie solely with the first 106 amino acids of CD4 (the V1 domain), a region having significant sequence homology to immunoglobulin variable regions. Analysis of the substitution mutants further defines a discrete binding site within this domain that overlaps a region structurally homologous to the second complementarity-determining region of antibody variable domains. Finally, we demonstrate that the inhibition of virus infection and virus-mediated cell fusion by soluble CD4 proteins depends on their association with gp120 at this binding site.  相似文献   

9.
10.
It has been shown that the incubation of human immunodeficiency virus (HIV) with polyclonal antibodies from HIV-infected persons and complement results in complement-mediated neutralization due, at least in part, to virolysis. The current study was performed to determine whether any of a panel of 16 human monoclonal antibodies to HIV could activate complement and, if so, which determinants of the HIV envelope could serve as targets for antibody-dependent complement-mediated effects. Human monoclonal antibodies directed to the third variable region (V3 region) of HIVMN gp120 induced C3 deposition on infected cells and virolysis of free virus. Antibodies to two other sites on HIVMN gp120 and two sites on gp41 induced few or no complement-mediated effects. Similarly, only anti-V3 antibodies efficiently caused complement-mediated effects on the HIVIIIB isolate. In general, the level of C3 deposition on infected cells paralleled the relative level of bound monoclonal antibodies. As expected, pooled polyclonal antibodies from infected persons were much more efficient than monoclonal antibodies inducing C3 deposition per unit of bound immunoglobulin. Treatment of virus or infected cells with soluble CD4 resulted in increases in anti-gp41 antibody-mediated virolysis and C3 deposition but decreases in anti-V3 antibody-mediated virolysis and C3 deposition. In general, virolysis of HIV was more sensitive as an indicator of complement-mediated effects than infected-cell surface C3 deposition, suggesting the absence of or reduced expression of functional complement control proteins on the surface of free virus. Thus, this study shows that human monoclonal antibodies to the V3 region of gp120 are most efficient in causing virolysis of free virus and C3 deposition on infected cells. Elution of gp120 with soluble CD4 exposes epitopes on gp41 that can also bind antibody, resulting in virolysis and C3 deposition. These findings establish a serologically defined model system for the further study of the interaction of complement and HIV.  相似文献   

11.
We have isolated a variant of human immunodeficiency virus type 1 (HIV-1) which is highly infectious to fibroblastlike cells (BT cells) derived from human brain as well as CD4-positive T cells. This variant HIV-1, named HIV[GUN-1V], was obtained by infecting BT cells with a prototype HIV-1 isolate, named HIV[GUN-1WT], which is highly infectious to T cells but barely infectious to BT cells. HIV[GUN-1V] infects BT cells productively and this infection appeared to be mediated by CD4. To elucidate the viral gene responsible for the host range difference between the variant and prototype HIV-1s, we cloned and analyzed the provirus genomes of the two viruses. Examination of the infectivities of BT cells by various recombinant viruses and analyses of the nucleotide sequences of HIV[GUN-1V] and HIV[GUN-1WT] showed that a single nucleotide exchange was responsible for their difference in infectivity of BT cells: HIV[GUN-1V] contains a thymine residue instead of the cytosine residue in HIV[GUN-1WT] at position 931 of the env coding sequence. Replacement of cytosine by thymine at this position of the env coding sequence of the HIV[GUN-1WT] genome induced the ability to infect BT cells. The base exchange at this position was expected to change amino acid 311 of the envelope glycoprotein, gp120, from proline to serine, which is located in a variable region containing type-specific immunodominant epitopes. Thus, HIV[GUN-1V] acquired a wider host range than HIV[GUN-1WT] by a single point mutation in the env gene.  相似文献   

12.
Abstract Two monoclonal antibodies (MAbs) were produced in Balb/c mice by immunization with recombinant gp41 derived from expression of λ-BH10 cDNA of the human immunowdeficiency virus-1 (HIV-1) in the prokaryotic expression vector pEX-41 [1, 2]. Characterization of the epitopes recognized by these MAbs was done with HIV-1 envelope (env) fusion proteins expressed in Escherochia coli encoding ten distinct segments of the env proteins [3]. In comparison, another mouse MAb, M25 [4], a human MAb directed against gp41, which was produced by the xeno hydridoma line 3D6 [5, 6] and a pool of human patient sera containing antibodies to HIV-1 were tested. We were able to demonstrate that the epitopes recognized by our MAbs are located betweeni arg732 and ser759 [7] of the HIV-1 env glycoprotein gp160 of HTLV-III strain B. M25 reacted with epitopes between ser647 and pro731, which includes the hydrophobic transmembrane region of gp41 [4]. The human MAb against gp41, 3D6 [5, 6] reacts with epitopes between ile474 and trp646, a polypeptide stretch consisting of gp120 and gp41 specific amino acids. The human serum pool, positive for HIV-1 antibodies, reacted predominantly with antigenic determinants locatedp between ile474 and leu863. The recombinant env fusion proteins were initially produced to test the immunoreactivity with patient sera and to characterize epitopes which are relevant for immunodiagnostic purposes [3]. In this study, we showed that the set of recombinant evr proteins is also a simple and accurate tool for the characterization of MAbs directed to the HIV envelope proteins.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 tightly binds CD4 as its principal cellular receptor, explaining the tropism of HIV-1 for CD4+ cells. Nevertheless, reports documenting HIV infection or HIV binding in cells lacking CD4 surface expression have raised the possibility that cellular receptors in addition to CD4 may interact with HIV envelope. Moreover, the lymphocyte adhesion molecule LFA-1 appears to play an important role in augmenting HIV-1 viral spread and cytopathicity in vitro, although the mechanism of this function is still not completely defined. In the course of characterizing a human anti-HIV gp41 monoclonal antibody, we transfected a CD4-negative, LFA-1-negative B-cell line to express an anti-gp41 immunoglobulin receptor (surface immunoglobulin [sIg]/gp41). Despite acquiring the ability to bind HIV envelope, such transfected B cells could not be infected by HIV-1. These cells were not intrinsically defective for supporting HIV-1 infection, because when directed to produce surface CD4 by using retroviral constructs, they acquired the ability to replicate HIV-1. Interestingly, transfected cells expressing both surface CD4 and sIg/gp41 receptors replicated HIV much better than cells expressing only CD4. The enhancement resided specifically in sIg/gp41, because isotype-specific, anti-IgG1 antibodies directed against sIg/gp41 blocked the enhancement. These data directly establish the ability of a cell surface anti-gp41 receptor to enhance HIV-1 replication.  相似文献   

14.
R I Brinkworth 《Life sciences》1989,45(20):iii-iix
An hypothesis is presented which states that the increased binding for CD4 by the envelope glycoprotein (gp120) from HIV-1 compared with that from HIV-2 is due to the env gene from HIV-1 having at some stage incorporated exon 2 of the gene coding for the beta subunit of a class II MHC protein, possibly HLA-DQ, which contains part of the CD4 binding site. Evidence is presented from amino acid sequence analysis and consideration of putative binding residues from gp120 and HLA-DQ.  相似文献   

15.
Peptides selected from the HIV viral protein gp120 bind to a synthetic peptide mimicking sequence 78-89 of the human lymphocyte CD4 molecule, linked to activated Sepharose. The binding of viral fragments to the CD4 peptide-Sepharose beads was ascertained either by aid of a ninhydrin reagent or by fluorescence microscopy. A suitable alignment of these HIV peptides with the CD4 fragment showed that multiple interactions might occur between hydrophobic or charged groups of the two molecules. Although this experiment does not demonstrate that these two amino acid stretches are involved in the primary binding of gp120 to CD4 receptors, the present data suggest that the two sequences might have some kind of interaction during subsequent steps of viral infection.  相似文献   

16.
A human monoclonal antibody (IgG2, lambda), 1B8.env, was produced, reactive with the envelope glycoprotein of human immunodeficiency virus (HIV). The antibody specifically stains cells infected with HIV, as assessed by indirect immunofluorescence analysis and reacts with determinants displayed on the surface of infected cells. In Western blot analysis, the antibody reacts with bands of 160 and 41 kD, consistent with the precursor and transmembrane forms of the HIV envelope glycoprotein. The antibody also reacts specifically in immunofluorescence and Western blot analysis with cells infected with the recombinant vaccinia virus VSC-25, which contains the envelope gene of HIV. With the lambda gt11 expression vector, the epitope recognized by 1B8.env was mapped to a region of 11 amino acids in the coding region of gp41. This domain is highly conserved between several otherwise highly variable HIV isolates. In addition, this epitope appears to be recognized by the vast majority of HIV seropositive individuals. Although antibody IB8.env does not neutralize HIV virion infectivity or virally mediated cell fusion, the results presented here demonstrate the feasibility of generating and characterizing human monoclonal antibodies to HIV with these techniques. Additional antibodies produced in this manner will help to further characterize the humoral response to HIV infection, define biologically significant determinants on HIV proteins, and may be useful in clinical applications.  相似文献   

17.
Several cDNA clones encoding a 46-kDa collagen-binding glycoprotein (gp46) from rat skeletal myoblasts were isolated and sequenced. The cDNA encoded a 17-amino acid signal peptide and a 400-amino acid mature protein, containing three potential N-linked oligosaccharide attachment sites. The cDNA sequence of gp46 shows 93% identity in the coding region with J6, a retinoic acid-inducible gene coding for a protein of unknown function described from embryonal carcinoma F9 cells. The first 41 NH2-terminal amino acids of the predicted J6 sequence are, however, different from the gp46 sequence as a result of a 7-base pair insertion in the gp46 cDNA. In addition, the NH2-terminal amino acid sequence of hsp47, a collagen-binding protein found in chick embryo fibroblasts, shows 64% identity to gp46 over 36 residues. Interestingly, this alignment begins 10 residues inward from the first amino acid in the mature form of gp46. A significant sequence similarity was observed between gp46 and members of the serine protease inhibitor (serpin) family. Unlike other serpins, however, gp46 is both a heat shock and a collagen-binding protein and is localized to the lumen of the endoplasmic reticulum, as suggested by the presence of the RDEL sequence at the COOH terminus. This sequence is similar to other proposed endoplasmic reticulum retention signals.  相似文献   

18.
The ability of one primary human immunodeficiency virus type 1 (HIV-1) isolate to outcompete another in primary CD4+ human lymphoid cells appears to be mediated by the efficiency of host cell entry. This study was designed to test the role of entry on fitness of wild-type HIV-1 isolates (e.g., replicative capacity) and to examine the mechanism(s) involved in differential entry efficiency. The gp120 coding regions of two diverse HIV-1 isolates (the more-fit subtype B strain, B5-91US056, and less-fit C strain, C5-97ZA003) were cloned into a neutral HIV-1 backbone by using a recently described yeast cloning technique. The fitness of the primary B5 HIV-1 isolates and its env gene cloned into the NL4-3 laboratory strain had similar fitness, and both were more fit than the C5 primary isolate and its env/NL4-3 chimeric counterpart. Increased fitness of the B5 over C5 virus was mediated by the gp120 coding region of the env gene. An increase in binding/fusion, as well as decreased sensitivity to entry inhibitors (PSC-RANTES and T-20), was observed in cell fusion assays mediated by B5 gp120 compared to C5 gp120. Competitive binding assays using a novel whole virus-cell system indicate that the primary or chimeric B5 had a higher avidity for CD4/CCR5 on host cells than the C5 counterpart. This increased avidity of an HIV-1 isolate for its cell receptors may be a significant factor influencing overall replicative capacity or fitness.  相似文献   

19.
CD4 is the primary receptor for human immunodeficiency virus (HIV). The binding site for the surface glycoprotein of HIV type 1 (HIV-1), gp120, has been mapped to the C'-C" region of domain 1 of CD4. Previously, we have shown that a mutant of rat CD4, in which this region was exchanged for that of human CD4, is able to mediate infection of human cells by HIV-1, suggesting that essential interactions between HIV and CD4 are confined to this region. Our observations appeared to conflict with mutagenesis and antibody studies which implicate regions of CD4 outside the gp120-binding site in postbinding events during viral entry. In order to resolve this issue, we have utilized a panel of anti-rat CD4 monoclonal antibodies in conjunction with the rat-human chimeric CD4 to distinguish sequence-specific from steric effects. We find that several antibodies to rat CD4 inhibit HIV infection in cells expressing the chimeric CD4 and that this is probably due to steric hinderance. In addition, we demonstrate that replacement of the rat CDR3-like region with its human homolog does not increase the affinity of the rat-human chimeric CD4 for gp120 or affect the exposure of gp41 following binding to CD4, providing further evidence that this region does not play a crucial role during entry of virus.  相似文献   

20.
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号