首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Investigations were performed to better understand the carbon economy in the elongation zone of tall fescue leaf blades. Plants were grown at constant 21°C and continuous 300 micromoles per square meter per second photosynthetic photon flux density where leaf elongation was steady for several days. Elongation occurred in the basal 20 mm of the blade (0-20 millimeters above the ligule) and was maximum at 9 to 12 millimeters. Eight 3-millimeter long segments were sampled along the length of the elongation zone and analyzed for water-soluble carbohydrates. Sucrose concentration was high in the zone of cell division (0-6 millimeters) whereas monosaccharide concentration was high at and distal to the location where cell elongation terminated (20 millimeters). Fructan concentration increased in the basal part, then remained constant at about 85% of the total mass of water-soluble carbohydrates through the remainder of the elongation zone. Data on spatial distribution of growth velocities and substance contents (e.g. microgram fructan per millimeter leaf length) were used to calculate local net rates of substance deposition (i.e. excess rates of substance synthesis and/or import over substance degradation and/or export) and local rates of sucrose import. Rates of sucrose import and net deposition of fructan were positively associated with local elongation rate, whereas net rates of sucrose deposition were high in the zone of cell division and those of monosaccharide were high near the termination of elongation. At the location of most active elongation imported sucrose (29.5 milligrams per square decimeter per hour) was used largely for synthesis of structural components (52%) and fructan (41%).  相似文献   

2.
Roots of hydroponically grown maize (Zea mays cv LG11) have a greatly reduced growth rate at 5°C (0.02 millimeters per hour) compared with those at 20°C (1.2 millimeters per hour). Various physical parameters of roots growing at each temperature were compared. Turgor pressure of cells in the elongation zone increased from 0.59 ± 0.05 megapascal at 20°C to 0.82 ± 0.04 megapascal after 70 hours at 5°C; thus, growth rate was not limited by decreased pressure. On cooling, tissue plasticity (measured by Instron/tensiometer) decreased slowly over 70 hours. On rewarming to 20°C from 5°C, growth rate, turgor pressure, and tissue plasticity all returned concertedly to their original values over a period of days. However, immediately following cooling growth rate dropped rapidly from 1.8 to 0.12 millimeters per hour in 30 minutes but turgor pressure and tissue Instron plasticity remained unchanged. A plot of turgor pressure against growth rate indicated that, following cooling from 30 to 15°C, the in vivo wall extensibility of the tissue was reduced by 75%. Yield threshold was unchanged. Cells whose expansion was arrested in the long-term cold treatment do not resume growth. Root growth recovers by the expansion of cells newly produced by the meristem. Cessation of extension growth is an effect on the individual expanding cell. Growth recovery is not a reverse of this effect but requires the generation of fresh cells.  相似文献   

3.
Stabilization of nitrate reductase in maize roots by chymostatin   总被引:9,自引:6,他引:3       下载免费PDF全文
Long DM  Oaks A 《Plant physiology》1990,93(3):846-850
Nitrate reductase (NR) in maize (Zea mays cv W64A × W182E) roots has been stabilized in vitro by the addition of chymostatin to extraction buffer. Contrary to previous observations, levels of NR were higher in the mature root than in root tip sections when chymostatin was included in the extraction buffer. Two forms of NR were identified, an NADH monospecific NR found mainly in the 1cm root tip and an NAD(P)H bispecific NR found predominantly in mature regions of the root. During the first 10 days of seedling growth, NR activity in the root ranged from 50 to 80% of the activities found in the leaf (a maximum of 2.4 micromoles NO2 produced per hour per gram fresh weight was measured at 4 days).  相似文献   

4.
Spatial distributions of growth and of the concentration of some inorganic nutrient elements were analyzed in developing leaves of maize (Zea mays L.). Growth was analyzed by pinprick experiments with numerical analysis to characterize fields of velocity and relative elemental elongation rate. Inductively coupled plasma and atomic emission spectroscopy were used to measure nutrients extracted from segments of leaf tissue collected by position. Leaves 7 and 8, both elongating 3 millimeters per hour had maximum relative elemental growth rates of 0.06 to 0.08 millimeters per hour with maximum rates 20 to 50 millimeters from the node and cessation of growth by 90 millimeters from the node. Spatial distribution of dry weight density revealed that the rate of biomass deposition was maximum in the most rapidly expanding region and continued beyond the elongation zone. The nutrient elements K, Cl, Ca, Mg, and P showed different distribution patterns of ion density (on a dry weight basis). K and Cl had minimal density in the leaf tips; K density was maximum in the growing region, whereas Cl density was maximum at the region of growth cessation. Ca, Mg, and P had relatively high densities at the base of the elongation zone near the node and also in the tip regions. Near the node, P and Mg densities were higher in the young, growing leaves, whereas Ca density near the node was higher in older leaves that had completed elongation. Deposition rates of all nutrients were greatest in the region of maximum elongation rate.  相似文献   

5.
Fruits of orange-fleshed and green-fleshed muskmelon (Cucumis melo L.) were harvested at different times throughout development to evaluate changes in metabolism which lead to sucrose accumulation, and to determine the basis of differences in fruit sucrose accumulation among genotypes. Concentrations of sucrose, raffinose saccharides, hexoses and starch, as well as activities of the sucrose metabolizing enzymes sucrose phosphate synthase (SPS) (EC 2.4.1.14), sucrose synthase (EC 2.4.1.13), and acid and neutral invertases (EC 3.2.1.26) were measured. Sucrose synthase and neutral invertase activities were relatively low (1.7 ± 0.3 micromole per hour per gram fresh weight and 2.2 ± 0.2, respectively) and changed little throughout fruit development. Acid invertase activity decreased during fruit development, (from as high as 40 micromoles per hour per gram fresh weight) in unripe fruit, to undetectable activity in mature, ripened fruits, while SPS activity in the fruit increased (from 7 micromoles per hour per gram fresh weight) to as high as 32 micromoles per hour per gram fresh weight. Genotypes which accumulated different amounts of sucrose had similar acid invertase activity but differed in SPS activity. Our results indicate that both acid invertase and SPS are determinants of sucrose accumulation in melon fruit. However, the decline in acid invertase appears to be a normal function of fruit maturation, and is not the primary factor which determines sucrose accumulation. Rather, the capacity for sucrose synthesis, reflected in the activity of SPS, appears to determine sucrose accumulation, which is an important component of fruit quality.  相似文献   

6.
Tall fescue (Festuca arundinacea Schreb.) leaf blades elongated 33% faster at continuous low than at continuous high irradiance (60 versus 300 micromoles per second per square meter photosynthetic photon flux density) when temperature of the leaf elongation zone was held constant at 21°C. Increased rate of elongation was associated with a near proportional increase in length of the elongation zone (+38%). In contrast, growth in width and thickness was decreased at low irradiance, resulting in only a 12% increase in leaf area production and 5% less total growth-associated water deposition than at high irradiance. At low irradiance dry matter (DM) import into the elongation zone was 28% less, and 55% less DM was used per unit leaf area produced. DM use in synthesis of structural components (i.e. DM less water-soluble carbohydrates) was only 13% less at low irradiance, whereas water-soluble carbohydrates (WSC) deposition was 43% less. The lower rate of WSC deposition at low irradiance was associated with a higher net rate of monosaccharide deposition (+39%), whereas net deposition rates for sucrose (−27%) and fructan (−56%) were less than at high irradiance. Still, at low irradiance, net fructan accumulation accounted for 64% of WSC deposition, i.e. 25% of DM import, demonstrating the high sink strength of the leaf elongation zone.  相似文献   

7.
Tall fescue leaf blades elongate at near constant rates during most of the light and dark periods of the diurnal cycle, with the dark rate being higher by 60 to 65%. Our objective was to determine relationships among diurnal rates of leaf elongation, deposition of water and deposition of dry matter (DM) into the elongation zone. Two separate experiments were conducted, both with a 15-hour photoperiod and constant 21°C at the growth zone. Increased rates of leaf elongation in darkness were due to proportionally increased rates of elongation of 4-millimeter segments of the elongation zone. Length of the total elongation zone was 30 millimeters in both light and darkness. The spatial distribution of water contents in the elongation zone varied little during the diurnal cycle. Thus, dark stimulation of leaf elongation rate (+65%) and of water deposition (+77%) into elongation zones were similar. Water content per unit leaf length increased by 50% between the basal and distal limits of the elongation zone, indicating that tissue also grew in the lateral and vertical dimensions. Longitudinal growth of tissue, however, allowed 5 to 7 times more water deposition into the elongation zone than growth in cross-sectional area. This relationship was similar in light and darkness. In both light and darkness net rates of DM deposition (microgram per millimeter leaf length per hour) increased from the zone of cell division towards the region of most active elongation, 10 to 15 millimeters from the ligule, then decreased towards the distal end of the elongation zone. Net DM deposition rates (microgram per hour) integrated over the 30-millimeter elongation zone were similar during light and darkness. Thus, DM in the elongation zone was diluted during darkness as a result of increased water deposition. Net DM deposition rates at and above the distal end of the elongation zone were clearly positive during the light, but were close to zero or negative in darkness. Thus, DM deposition into the elongation zone and the adjacent recently expanded tissue was differentially affected in the diurnal cycle, DM deposition occurred in both tissues in light, but was restricted to the elongation zone in darkness.  相似文献   

8.
Robinson SP 《Plant physiology》1982,70(4):1032-1038
Uptake of d, l-glycerate into the chloroplast stroma has been studied using the technique of silicone oil filtering centrifugation. Glycerate uptake was 3 to 5 times higher in the light than in darkness, the stimulation by light being abolished by the proton ionophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. The pH optimum for uptake was 7.0 at 2°C and 8.5 at 20°C, but at all pH values the rate of uptake was higher at 20°C than at 2°C. Uptake was concentration dependent, saturating above 8 millimolar glycerate. At 2°C, the Km was 0.3 millimolar and the Vmax was 13 micromoles per milligram of chlorophyll per hour. At 20°C initial rates of glycerate uptake were higher than 40 micromoles per milligram of chlorophyll per hour.  相似文献   

9.
Conditions are described for isolating functional phycobilisome-thylakoid vesicles from the red alga Porphyridium cruentum. Phycobilisome-thylakoid vesicles were prepared by brief sonication and centrifugation in a medium containing 0.5 molar sucrose, 0.5 molar potassium phosphate, and 0.3 molar sodium citrate (pH 7.0). They required ferricyanide as an oxidant and had O2 evolution rates (about 450 micromoles O2 per hour per milligram chlorophyll) higher than whole cells (about 250 micromoles O2 per hour per milligram chlorophyll). Energy transfer to photosystem II chlorophyll was evident from a high F695 nanometer (−196 C) emission peak. Preparations could be stored for over 24 hours and were considerably more stable than those from the cyanobacterium Anabaena variabilis (Katoh T, E Gantt 1979 Biochim Biophys Acta 546: 383-393). In electron micrographs of negatively stained material, the active thylakoid vesicles were found covered by closely spaced phycobilisomes on their external surface. The phycobilisome number in negatively stained vesicles was 450 per square micrometer, which was in the same range as the 400 per square micrometer observed in surface sections. A cell containing 1.5 × 10−6 micrograms phycoerythrin and 1.3 × 10−6 micrograms chlorophyll was found to contain 5 to 7 × 105 phycobilisomes on a thylakoid area of 1.1 to 1.6 × 103 square micrometers.  相似文献   

10.
Changes in the concentrations of NH4+ and amides during the growth of suspension cultures of rose (Rosa cv. Paul's Scarlet) cells were examined. When cells were grown in medium possessing only NO3 as a nitrogen source, the concentrations of NH4+ and amides increased to 4.0 × 10−1 and 5.9 micromoles per gram fresh weight, respectively. The amounts of both constituents declined during the later stages of growth. When a trace amount of NH4+ was added to the NO3 base starting medium, the concentration of NH4+ in the cells was increased to 7.0 × 10−1 micromoles per gram fresh weight.  相似文献   

11.
Uronide Deposition Rates in the Primary Root of Zea mays   总被引:12,自引:11,他引:1       下载免费PDF全文
The spatial distribution of the rate of deposition of uronic acids in the elongation zone of Zea mays L. Crow WF9 × Mo 17 was determined using the continuity equation with experimentally determined values for uronide density and growth velocity. In spatial terms, the uronide deposition rate has a maximum of 0.4 micrograms per millimeter per hour at s = 3.5 mm (i.e., at the location 3.5 mm from the root tip) and decreases to 0.1 mg mm−1 h−1 by s = 10 mm. In terms of a material tissue element, a tissue segment located initially from s = 2.0 to s = 2.1 mm has 0.14 μg of uronic acids and increases in both length and uronic acid content until it is 0.9 mm long and has 0.7 μg of uronide when its center is at s = 10 mm. Simulations of radioactive labeling experiments show that 15 min is the appropriate time scale for pulse determinations of deposition rate profiles in a rapidly growing corn root.  相似文献   

12.
The green-fruited Lycopersicon hirsutum Humb. and Bonpl. accumulated sucrose to concentrations of about 118 micromoles per gram fresh weight during the final stages of development. In comparison, Lycopersicon esculentum Mill. cultivars contained less than 15 micromoles per gram fresh weight of sucrose at the ripe stage. Glucose and fructose levels remained relatively constant throughout development in L. hirsutum at 22 to 50 micromoles per gram fresh weight each. Starch content was low even at early stages of development, and declined further with development. Soluble acid invertase (EC 3.2. 1.26) activity declined concomitant with the rise in sucrose content. Acid invertase activity, which was solubilized in 1 molar NaCl (presumably cell-wall bound), remained constant throughout development (about 3 micromoles of reducing sugars (per gram fresh weight) per hour. Sucrose phosphate synthase (EC 2.4.1.14) activity was present at about 5 micromoles of sucrose (per gram fresh weight) per hour even at early stages of development, and increased sharply to about 40 micromoles of sucrose (per gram fresh weight) per hour at the final stages of development studied, parallel to the rise in sucrose content. In comparison, sucrose phosphate synthase activity in L. esculentum remained low throughout development. The possible roles of the sucrose metabolizing enzymes in determining sucrose accumulation are discussed.  相似文献   

13.
Beer S 《Plant physiology》1985,79(1):199-201
Net photosynthetic rates of Spirodela polyrrhiza turions, at low O2 levels, were 6.2 and 38.8 micromoles O2 per gram fresh weight per hour at 1 millimolar HCO3 and CO2 saturation, respectively, and much lower in a regular low-pH growth solution. Air equilibration O2 concentrations decreased rates considerably, except at CO2 saturation. The surfacing rate of turions in various inorganic carbon surroundings correlated positively with their photosynthetic rates, but were the same at high and low O2 levels. The relevance of these findings in relation to environmental conditions conductive to germination of autotrophically growing turions is discussed.  相似文献   

14.
Kreps JA  Town CD 《Plant physiology》1992,99(1):269-275
Mutants of Arabidopsis thaliana have been selected for resistance to growth inhibition at the seedling stage by α-methyltryptophan (aMT). One mutant, amt-1 has been characterized in detail. The appearance and growth rate of the mutant in the absence of the inhibitor are similar to wild type, both as plants and callus. However, mutant plant growth is unaffected by 25 micromolar aMT and mutant callus growth by 50 micromolar aMT, concentrations that completely inhibit the growth of wild-type plants and callus, respectively. Tryptophan levels in mutant and wild-type plants are 24.3 ± 2.7 and 4.7 ± 1.2 micrograms per gram fresh weight, respectively, and in the corresponding callus 64.0 ± 2.6 and 31.8 ± 8.4 micrograms per gram fresh weight, respectively. Anthranilate synthase (AS) activity levels in crude extracts from whole plants are 3.09 ± 0.54 nanomoles per milligram protein per hour in amt-1 and 1.32 ± 0.21 nanomoles per milligram protein per hour in wild-type plants. In crude extracts from callus, anthranilate synthase levels are 11.54 ± 2.05 nanomoles per milligram protein per hour and 7.74 ± 1.58 in amt-1 and wild type, respectively. Enzyme extracts are inhibited by l-tryptophan; the concentrations required for 50% inhibition (I50) are 3.9 and 1.9 micromolar for amt-1 and for wild type, respectively. The mutation segregates as a single nuclear allele and shows incomplete dominance. The concomitant increases in both AS activity and its I50 for tryptophan suggest that the mutation amt-1 either resides in one of the AS structural genes or causes increased expression of an AS isoform with an I50 greater than the average for the entire extract.  相似文献   

15.
The vertical growth responses of corn seedlings (Zea mays L. Mo17 × B73) were determined over an 8-hour period. When seedlings were decapitated 3 millimeters from the coleoptile's tip and supplied with indole-3-acetic acid (IAA) in 1.5% agar blocks, the response was dependent both on time and IAA concentration. The dose-response curves changed in shape and magnitude depending on the total time of IAA application. High concentrations (>3.2 × 10−6 molar) initially produced high relative growth rates that decreased back to the intact rate (0.03 millimeter per hour per millimeter) after 3 hours. Low concentrations (<1.0 × 10−6 molar), or agar blocks without IAA, resulted in a rapid decrease from the intact rate to a level that stabilized at 0.01 millimeter per hour per millimeter until the growth rate began to recover after 3 to 4 hours. Intermediate concentrations produced responses similar to that of the intact organ, though some features of these responses were unique.

The coleoptile curvature in response to gravity depended upon whether the coleoptiles were intact, decapitated, or decapitated and supplied with IAA. Coleoptiles decapitated and not supplied wth IAA showed little or no curvature for 3 hours after decapitation. By this time an adaptation, evoked by the low IAA level, had developed and the coleoptiles began to curve steadily. When 1.0 or 3.2 × 10−6 molar IAA was supplied, curvature was initiated within the first 30 minutes and reached a maximum rate before decreasing and stopping after 3 to 4 hours. The sequence of events in response to these concentrations was similar to the intact sequence but the curvature rate was reduced to one-third to one-half. A model for the autotropic response involving an auxin concentration-dependent, growth-modulating mechanism capable of two modes of adaptation is described.

  相似文献   

16.
Huber SC 《Plant physiology》1989,91(2):656-662
It is not known why some species accumulate high concentrations of sucrose in leaves during photosynthesis while others do not. To determine the possible basis, we have studied 10 species, known to differ in the accumulation of sucrose, in terms of activities of sucrose hydrolyzing enzymes. In general, acid invertase activity decreased as leaves expanded; however, activities remaining in mature, fully expanded leaves ranged from low (<10 micromoles per gram fresh weight per hour) to very high (>100 micromoles per gram fresh weight per hour). In contrast, sucrose synthase activities were low and relatively similar among the species (4-10 micromoles per gram fresh weight per hour). Importantly, leaf sucrose concentration, measured at midafternoon, was negatively correlated with acid invertase activity. We propose that sucrose accumulation in vacuoles of species such as soybean and tobacco is prevented by acid invertase-mediated hydrolysis. Initial attempts were made to characterize the relatively high activity of acid invertase from mature soybean leaves. Two apparent forms of the enzyme were resolved by Mono Q chromatography. The two forms had similar affinity for substrate (apparent Km [sucrose] = 3 millimolar) and did not interconvert upon rechromatography. It appeared that the loss of whole leaf invertase activity during expansion was largely the result of changes in one of the enzyme forms. Overall, the results provide a mechanism to explain why some species do not accumulate sucrose in their leaves. Some futile cycling between sucrose and hexose sugars is postulated to occur in these species, and thus, the energy cost of sucrose production may be higher than is generally thought.  相似文献   

17.
Additions of methionine sulfoximine (MSX), an inhibitor of glutamine synthetase (GS), result in an increase in NH3 in seedling leaves of C3 (wheat [Triticum aestivum cv. Kolibri] and barley [Hordeum vulgare var Perth]) and C4 (corn [Zea mays W6A × W182E] and sorghum [Sorghum Vulgare var MK300]) plants. NH3 accumulation is higher in C3 (about 17.8 micromoles per gram fresh weight per hour) than in C4 (about 4.7 micromoles) leaves. Under ideal conditions, when photosynthesis is not yet inhibited by the accumulation of NH3, the rate of NH3 accumulation is about 16% of the apparent rate of photosynthesis. A maximum accumulation of NH3 was elicited by 2.5 millimolar MSX and was essentially independent of the addition of NO3 during either the growth or experimental period. When O2 levels in the air were reduced to 2%, MSX resulted in some accumulation of NH3 (6.0 micromoles per gram fresh weight per hour). At these levels of NH3, there was no significant inhibition of rates of CO2 fixation. There was also a minor, but significant, accumulation of NH3 in corn roots treated with MSX. Inhibitors of photorespiration (isonicotinic hydrazide, 70 millimolar; 2-pyridylhydroxymethanesulfonic acid, 20 millimolar) or transaminase reactions (aminooxyacetate, 1 millimolar) inhibited the accumulation of NH3 in both C3 and C4 leaves. These results support the hypothesis that GS is important in the assimilation of NH3 in leaves and that the glycine-serine conversion is a major source of that NH3.  相似文献   

18.
Long SP  Drake BG 《Plant physiology》1991,96(1):221-226
CO2 concentration was elevated throughout 3 years around stands of the C3 sedge Scirpus olneyi on a tidal marsh of the Chesapeake Bay. The hypothesis that tissues developed in an elevated CO2 atmosphere will show an acclimatory decrease in photosynthetic capacity under light-limiting conditions was examined. The absorbed light quantum yield of CO2 uptake (øabs and the efficiency of photosystem II photochemistry were determined for plants which had developed in open top chambers with CO2 concentrations in air of 680 micromoles per mole, and of 351 micromoles per mole as controls. An Ulbricht sphere cuvette incorporated into an open gas exchange system was used to determine øabs and a portable chlorophyll fluorimeter was used to estimate the photochemical efficiency of photosystem II. When measured in an atmosphere with 10 millimoles per mole O2 to suppress photorespiration, shoots showed a øabs of 0.093 ± 0.003, with no statistically significant difference between shoots grown in elevated or control CO2 concentrations. Efficiency of photosystem II photochemistry was also unchanged by development in an elevated CO2 atmosphere. Shoots grown and measured in 680 micromoles per mole of CO2 in air showed a øabs of 0.078 ± 0.004 compared with 0.065 ± 0.003 for leaves grown and measured in 351 micromoles per mole CO2 in air; a highly significant increase. In accordance with the change in øabs, the light compensation point of photosynthesis decreased from 51 ± 3 to 31 ± 3 micro-moles per square meter per second for stems grown and measured in 351 and 680 micromoles per mole of CO2 in air, respectively. The results suggest that even after 3 years of growth in elevated CO2, there is no evidence of acclimation in capacity for photosynthesis under light-limited conditions which would counteract the stimulation of photosynthetic CO2 uptake otherwise expected through decreased photorespiration.  相似文献   

19.
Rhythmic fluctuation in the basipetal movement of auxin occurs in corn (Zea mays) coleoptiles oriented either in the vertical or in the horizontal position. This periodicity of transport rate varies from region to region in a horizontal coleoptile. Between an upper and lower half coleoptile (with respect to gravity), the comparable regions in the coleoptile do not exhibit similar periods. The velocity of transport also varies from region to region along a geostimulated coleoptile. In the upper half coleoptile, the velocities are 29 millimeters per hour (tip), 8 millimeters per hour (mid), and 30 millimeters per hour (base); in the lower, 41 millimeters per hour (tip), 12 millimeters per hour (mid) and 12 millimeters per hour (base).  相似文献   

20.
Vale FR  Jackson WA  Volk RJ 《Plant physiology》1987,84(4):1416-1420
Potassium influx into roots of dark-grown decapitated maize seedling (Zea mays L., cv Pioneer 3369A) was examined in presence and absence of ambient ammonium and at various root potassium concentrations. Six-day old seedlings which were dependent on the endosperm reserves for their energy source were exposed to KCl (labeled with 86Rb) ranging from 5 to 200 micromolar. At both low (13 micromoles per gram fresh weight) and high (100 micromoles per gram fresh weight) root potassium concentration, isotherms indicated two potassium influx systems, one approaching saturation at 50 to 100 micromolar potassium and an additional one tentatively considered to be linear. A mixed-type inhibition by ammonium for the low-concentration saturable system was indicated by a concomitant decrease in Vmax and increase in Km. High root potassium concentration decreased Vmax but had little effect on Km of this system. The rate constant for the second quasilinear system was decreased by ambient ammonium and by high root potassium status. Transfer of high potassium roots to potassium-free solutions resulted in an increase in influx within 2 hours; by 24 hours influx significantly exceeded that of roots not previously exposed to potassium. In roots of both low and high root potassium concentrations, potassium influx was restricted progressively as ambient ammonium increased to about 100 micromolar, but there was little further inhibition as ammonium concentrations increased beyond that to 500 micromolar. The data imply that potassium influx has two components, one subject to inhibition by ambient ammonium and one relatively resistant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号