首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
The synthetic pyrethroids bioallethrin,d-phenothrin, and fenvalerate, when tested by the slidedip technique, were more toxic to female two-spotted spider mites,Tetranychus urticae Koch, at 30°C than at 20°C. LC50 values differed by 1.7-, 3.8-, and 5.3-fold, respectively. Two other synthetic pyrethroids, flucythrinate and cyfluthrin, gave similar toxicity values at these two temperatures. The greater sensitivity ofT. urticae at a warmer temperature to the first three pyrethroids differs from insect toxicity studies, which often show negative temperature relationships.University of Minnesota Scientific Journal Series No. 14954  相似文献   

2.
Influence of salinity and temperature on the germination of Kochia scoparia   总被引:1,自引:0,他引:1  
Kochia scoparia is one of the most common annual halophytes foundin the Great Basin. Seeds were collected from a population growing in asalt playa at Faust, Utah and were germinated at 5 temperature regimes(12 h night/12 h day, 5–15 °C, 10–20 °C, 15–25 °C,20–30 °C and 25–35 °C) and 6 salinities (0, 200, 400,600, 800 and 1000 mM NaCl) to determine optimal conditions forgermination and recovery of germination from saline conditions after beingtransferred to distilled water. Maximum germination occurred in distilledwater, and an increase in NaCl concentration progressively inhibited seedgermination. Few seeds germinated at 1000 mM NaCl. A temperatureregime of 25 °C night and 35 °C day yielded maximumgermination. Cooler temperature 5–15 °C significantly inhibited seedgermination. Rate of germination decreased with increase in salinity.Germination rate was highest at 25–35 °C and lowest at5–15 °C. Seeds were transferred from salt solutions to distilled waterafter 20 days and those from high salinities recovered quickly at warmertemperature regimes. Final recovery germination percentages in high salttreatments were high, indicating that exposure to high concentration ofNaCl did not inhibit germination permanently.  相似文献   

3.
Oospore germination occurred over a temperature ranging of 15–35°C forPythium coloratum, 10–35°C forP. diclinum, 15–30°C forP. dissotocum, 7–30°C forP. monospermum, and 10–30°C forP. pleroticum. Optimum temperature was 25°C for all species tested. In case of pH, oospore germination occurred over a range of 4.76–8.55 with an optimum of 6.40–7.40. The least germination occurred at pH 4.76 forP. coloratum, P. diclinum, P. monospermum andP. pleroticum, whileP. dissotocum germinated from pH 5.02. Oospores of the all tested pythia were able to germinate at –0.13 to –1.65 MPa and could not germinate at –3.40 MPa, with the highest germination rate at –0.27 to –0.47 MPa. The effect of temperature, pH and osmotic potential on oospore germination was discussed in relation to pollution of pond water.  相似文献   

4.
Effects of temperature on the activity of flucycloxuron on larval stages of Panonychus ulmi (Koch), based on LC50 values, were highly significant (P < 0.001) with temperature coefficients of-1.7 in both the ranges of 15° to 25°C and 20° to 30°C. The slopes of probit regression lines at 15° and 20°C were significantly steeper than those at 25° and 30°C. As a consequence the temperature coefficients based on LC90 values were-4.4 and-2.2, for the 2 temperature ranges. The ovicidal activity of flucycloxuron on P. ulmi was low and was only statistically detectable at 20°C (LC90 of 84 mg a.i./l). In studies with larvae of Aedes aegypti (Linnaeus), Leptinotarsa decemlineata (Say), Plutella xylostella (Linnaeus), Spodeptera exigua (Hübner) and Spodoptera littoralis (Boisduval) probit regression lines were parallel over temperature. The activity of flucycloxuron on these five insect species was not affected by temperature. Based on LC50 values, diflubenzuron showed positive temperature coefficients on P. xylostella of + 2.1 at 15° to 25°C and + 2.5 at 20° to 30°C. For S. littoralis the temperature coefficient was positive (+ 2.4) at 15° to 25°C but negative (-1.9) at the 20° to 30°C range. Temperature coefficients of diflubenzuron were neutral for A. aegypti, L. decemlineata and S. exigua. In the design and analysis of these studies special allowance was made for date effects and variation in natural mortality over temperature.  相似文献   

5.
Johanna Laybourn 《Oecologia》1979,41(3):329-337
Summary Growth and respiration were measured in a species of Anonchus (Nematoda: Plectidae) at 5°C, 10°C, 15°C, 20°C and 25°C. At 5°C no growth was measurable but the organisms remained active. Maximum production occurred at 15°C, but the highest rate of growth occurred at 20°C. Thus, adult size attained is dependent on the temperature of growth. Respiratory energy losses derived from Cartesian diver microrespirometry, increased with temperature up to 25°C. Regression coefficients (b values) derived from a log log linear regression of weight against oxygen consumption varied between 0.574–1.793, the lowest value being attained at 5°C, the highest at 20°C. Based on Q10, production and respiratory energy losses the optimum temperatures for Anonchus appears to lie between 10°C–15°C.  相似文献   

6.
We evaluated the combined effects of food (0.5 × 106, 1.0 × 106 and 2.0 × 106 cells ml−1 of Chlorella vulgaris) and temperature (15, 20 and 25 °C) on life history variables of B. havanaensis. Regardless of Chlorella density there was a steep fall in the survivorship of B. havanaensis at 25 °C. Both food level and temperature affected the fecundity of B. havanaensis. At any given food level, rotifers cultured at 15 °C showed extended but low offspring production. At 25 °C, offspring production was elevated, the duration of egg laying reduced and the fecundity was higher during the latter part of the reproductive period. The effect of food level was generally additive, at any given temperature, and higher densities of Chlorella resulted in higher offspring production. Average lifespan, life expectancy at birth and generation time were 2–3 times longer at 15 °C than at 25 °C. At 20 °C, these remained at intermediate levels. The shortest generation time (about 4 days) was observed at 25 °C. Gross and net reproductive rates and the rate of population increase (r) increased with increasing temperature and generally, at any given temperature, higher algal food levels contributed to higher values in these variables. The r varied from 0.11 to 0.66. The survival patterns and lower rates of reproduction at 15 °C suggest that the winter temperatures (10–15 °C) prevailing in many waterbodies in Mexico City allow this species to sustain throughout the year under natural conditions.  相似文献   

7.
He  Z.H.  Qin  J.G.  Wang  Y.  Jiang  H.  Wen  Z. 《Hydrobiologia》2001,457(1-3):25-37
Moina mongolica, 1.0-1.4 mm long and 0.8 mm wide, is an Old World euryhaline species. This paper reviewed the recent advances on its autecology, reproductive biology, feeding ecology and perspective as live food for marine fish larviculture. Salinity tolerance of this species ranges from 0.4–1.4 to 65.2–75.4. Within 2–50 salinity, Moina mongolica can complete its life cycle through parthenogenesis. The optimum temperature is between 25 °C and 28 °C, while it tolerates high temperature between 34.4 °C and 36.0 °C and lower temperature between 3.2 °C and 5.4 °C. The non-toxic level of unionised ammonia (24 h LC50) for M. mongolica is <2.6 mg NH3–N l–1. Juvenile individuals filter 2.37 ml d–1 and feed 9.45×106 algal cells d–1, while mature individuals filter 9.45 ml d–1 and consume 4.94×106 algal cells d–1. At 28 °C, M. mongolica reaches sex maturity in 4 d and gives birth once a day afterward; females carry 7.3 eggs brood–1 and spawn 2.8 times during their lifetime. A variety of food can be used for M. mongolica culture including unicellular algae, yeast and manure, but the best feeding regime is the combination of Nannochloropsis oculata and horse manure. Moina mongolica reproduces parthenogenetically during most lifetime, but resting eggs can be induced at temperature (16 °C) combined with food density at 2000–5000 N. oculata ml–1. The tolerance to low dissolved oxygen (0.14–0.93 mg l–1) and high ammonia makes it suitable for mass production. Biochemical analyses showed that the content of eicospantanoic acid (20:53) in M. mongolica accounts for 12.7% of total fatty acids, which is higher than other live food such as Artemia nauplii and rotifers. This cladoceran has the characteristics of wide salinity adaptation, rapid reproduction and ease of mass culture. The review highlights its potential as live food for marine fish larvae.  相似文献   

8.
Summary The snake-head fish (Channa argus) is an obligate air-breather inhabiting fresh waters in the temperate zone of East Asia.Ventilation of the air-breathing organ and aerial gas exchange were measured in 1 to 2 kg specimens at 15 and 25°C. Additionally, the ventilatory responses to hypoxia and hypercapnia were studied. Aerial ventilation increased from 1.1 to 2.9 mlbtps·kg–1·min–1 when temperature rose from 15 to 25°C. Concomitantly, O2-uptake through airbreathing increased from 0.1 mlstpd·kg–1·min–1 (15°C) to 0.28 mlstpd·kg–1·min–1 (25°C), whereas aerial gas exchange was less important for CO2-climination as evident from low gas exchange ratios (0.16 at 15°C, 0.29 at 25°C).Ventilation increases only slightly in response to inspiration of hypercapnic gas mixtures or to hypoxic conditions in water. By contrast, inspiration of hypoxic gas mixtures caused marked increases of ventilation in particular at the higher temperature.Aerial ventilation inChanna is low compared to values for ectothermic pulmonary breathers. However, its ventilatory responses to hypoxia strikingly resemble those of reptiles: The most marked ventilatory response to hypoxia occurs at the higher temperature where the demands for O2 are greatest.  相似文献   

9.
Daily food intake of adult burbot, Lota lota, fed on vendace, Coregonus albula, were estimated experimentally at four different water temperatures (2.4, 5.1, 10.8 and 23.4°C). Mean daily food intake (MDI; g d–1) and relative daily food intake (RDI; g g–1 d–1) increased with temperature from 2.4 to 10.8°C and decreased at 23.4°C. Temperatures of maximum daily food intake values were 13.6°C for MDI and 14.4°C for RDI. No correlation between food intake values and burbot weight was observed. RDI values were used to estimate annual food consumption of burbot population. Annual food consumption estimates were 9.7kg ha–1 and 24.3kg ha–1 when burbot biomass was 2.0 or 5.0kg ha–1, respectively.  相似文献   

10.
The effect of temperature on the ovipositional biology ofBoophilus annulatus (Say) was determined under laboratory conditions. Engorged females subjected to constant temperatures of 12 and 45°C died without ovipositing, while females held at 15 and 40°C laid eggs which did not hatch. The preoviposition period at 25–40°C was 2–3 days; however, significant increases occurred at 20°C (5.2 days) and at 15°C (16.3 days). The number of eggs laid per female was ca. 2700 at temperatures of 25–35°C, but decreased significantly at 20°C (ca. 2300 eggs/female), 15°C (ca. 1800 eggs/female), and at 40°C (ca. 300 eggs/female). No differences were observed in the Conversion Efficiency Index (CEI) values at temperatures of 20–30°C (ca. 50%), while temperatures of 15 and 40°C produced the lowest CEI values at 35.6 and 4.9%, respectively. Hatch-ability of eggs was ca. 80% at temperatures of 20–35°C. Incubation period of eggs ranged from 52.2 days at 20°C to 16.2 days at 35°C. The thermal threshold for egg development determined by linear regression was 12.9°C. Females subjected to four fluctuating temperature regimes produced no differences in number of eggs/female (ca. 2400), CEI (ca. 50%), or hatchability of eggs (ca. 75%). Preoviposition period and incubation were significantly affected by a change in the thermoperiod, becoming longer in duration as the temperatures were decreased. From studying females exposed for various intervals from 0 to 105 days at 12°C, indications were that the longer the exposure period the more adverse the effects were on oviposition and egg-hatch. Correspondingly, exposure of eggs to a temperature of 15°C for up to 105 days gave indications that the longer the eggs remained at 15°C, the lower the hatch would be after transfer back to a temperature of 25°C.  相似文献   

11.
Summary A bimodal temperature response is observed in the germination of seeds in Jussiaea suffruticosa, both under continuous and cyclic light treatments. Germination exhibits two maxima at around 25° C and at 40°, and a minimum in the region of 30–35°. The response depends on light intensity both under continuous and intermittent light treatments. This dependence is much more noticeable in the region of minimum germination (30°). Both preincubation in darkness at 35° and high light intensities (15 500 lux) tend to eliminate the bimodal temperature response.  相似文献   

12.
One-year-old tree seedlings were incubated in a greenhouse from April to July, under natural daylight conditions, with their root systems at constant temperatures of 5, 10, 15, 20, 25, 30 and 35 °C and with the above ground parts kept at a constant air temperature of 18–20 °C. The course of height growth, total mass increment, root, shoot and leaf weight as well as leaf areas were measured. The results indicate that clear differences exist in the optimal root zone temperatures for various growth parameters in different tree species. Pinus sylvestris had a maximal height increment at about 5–10 °C and maximal total mass increment at 15 °C root temperature. In contrast, the optimum for Quercus robur was at 25 °C. Tilia cordata and Fagus sylvatica had their optima for most growth parameters at 20 °C. The root temperature apparently indirectly influenced photosynthesis (dry weight accumulation) and respiration loss. From the observed symptoms and indications in the literature it seems probable that a change in hormone levels is involved as the main factor in the described effects. Variation of root temperature had only an insignificant effect on bud burst and the time at which the shoots sprouted. Apparently species of northern origin seem to have lower root temperature optima than those of more southern origin. This is to be verified by investigation of other tree species.  相似文献   

13.
The effects of root-zone salinity (0, 30, and 60 mmol L–1 of NaCl) and root-zone temperature (10, 15, 20, and 25°C) and their interactions on the number of tillers, total dry matter production, and the concentration of nutrients in the roots and tops of barley (Hordeum vulgare L.) were studied. Experiments were conducted in growth chambers (day/night photoperiod of 16/8 h and constant air temperature of 20°C) and under water-culture conditions. Salinity and root temperature affected all the parameters tested. Interactions between salinity and temperature were significant (p<0.05) for the number of tillers, growth of tops and roots, and the concentration of Na, K, P in the tops and the concentration of P in the roots. Maximum number of tillers and the highest dry matter were produced when the root temperature was at the intermediate levels of 15 to 20°C. Effect of salinity on most parameters tested strongly depended on the prevailing root temperature. For example, at root temperature of 10°C addition of 30 mmol L–1 NaCl to the nutrient solution stimulated the growth of barley roots; at root temperature of 25°C, however, the same NaCl concentration inhibited the root growth. At 60 mmol L–1, root and shoot growth were maximum when root temperature was kept at the intermediate level of 15°C; most inhibition of salinity occurred at both low (10°C) and high (25°C) root temperatures. As the root temperature was raised from 10 to 25°C, the concentration of Na generally decreased in the tops and increased in the roots. At a given Na concentration in the tops or in the roots, respective growth of tops or roots was much less inhibited if the roots were grown at 15–20°C. It is concluded that the tolerance of barley plant to NaCl salinity of the rooting media appears to be altered by the root temperature and is highest if the root temperature is kept at 15 to 20°C.  相似文献   

14.
Dormant Amaranthus retroflexus seeds do not germinate in the dark at temperatures below 35°C. Fully dormant seeds germinate only at 35–40°C whereas non-dormant ones germinate within a wider range of temperatures (15 to 40°C). Germination of non-dormant seeds requires at least 10% oxygen, but the sensitivity of seeds to oxygen deprivation increases with increasing depth of dormancy. 10–6 to 10–4 M ethephon, 10–3 M 1-aminocyclopropane 1-carboxylic acid (ACC) and 10–3 M gibberellic acid (GA3) break this dormancy. In the presence of 10–3 M GA3 dormant seeds are able to germinate in the same range of temperatures as non-dormant seeds. The stimulatory effect of GA3 is less dependent on temperature than that of ethephon, while ACC stimulates germination only at relatively high temperatures (25–30°C). The results obtained are discussed in relation to the possible involvement of endogenous ethylene in the regulation of germination of A. retroflexus seeds.Abbreviations ACC 1-aminocyclopropane 1-carboxylic acid - GA3 gibberellic acid - SD standard deviation  相似文献   

15.
Effects of light and temperature, on the growth of three freshwater green algae isolated from an eutrophic lake and identified as Selenastrum minutum, Coelastrum microporum f. astroidea and Cosmarium subprotumidumwere studied in batch cultures under non-nutrient limited conditions. Experiments were performed to determine the growth rate over a wide range of light intensities (30–456 mol m–2 s–1) and temperature (15–35°C), using a 15/9 (light/dark) photoperiod cycle. The maximum growth rates and the optimum light intensities at a temperature of 35°C were 1.73 d–1 and 420 mol m–2 s–1for Selenastrum minutum, 1.64 d–1 and 400 mol m–2 s–1 for Coelastrum microporum and 1.00 d–1 and 400 mol m–2 s1 for Cosmarium subprotumidum. The results were fitted with the mathematical models of Steele (1965), Platt & Jassby (1976) and Peeters & Eilers (1978). Steele's function and equation of Platt & Jassby don't describe correctly the relationship between the growth and light intensity. In the opposite, the equation of Peeters & Eilers provides the best fit for the three species.  相似文献   

16.
After 6 weeks incubation on rice 2 strains of Fusarium crookwellense produced more zearalenone (6060–5010 mg/kg dry wt of culture) at ambient temperature (16–29°C) in daylight than at ambient temperature (18–23 °C) in darkness or at controlled temperatures of 11 °C, 20 °C or 25 °C in darkness. Yields at 25 °C were low. Incubation at 11 °C during the second 3 weeks incubation increased yields only when preliminary incubation had been at 25 °C. After 6 weeks incubation at controlled temperatures in darkness, 4 strains produced most zearalenone at 20 °C (2460-21 360 mg/kg), 1 strain at 11 °C (6570 mg/kg). Yields at a temperature oscillating daily from 10–20 °C were less than at 15 °C. One of the 5 strains produced appreciable amounts of a-zearalenol (1645 mg/kg at 20°C) and 2 of nivalenol (340 and 499 mg/kg at 20 °C).  相似文献   

17.
The detrimental effect of solar radiation on the survival of conidia of the entomopathogenic fungusPaecilomyces fumoroseus was studied by monitoring germinability and ability to form colonies (CFU) of conidia irradiated at two temperatures, 25 and 35 °C, harmless to shaded conidia. There was no apparent effect when spores were exposed to a high level of artificial radiation (0.66 W m–2 UVB). However, at a lower level of irradiance (0.33 W m–2), effects of radiation occurred more quickly at 35 °C than at 25 °C. Under natural solar radiation, the rate of decrease in germinability or viability was doubled at 35 °C as compared to 25 °C, indicating an interaction between temperature and radiation effects under natural conditions. This interaction was not detected in indoor experiments, indicating that the spectral distribution of UV radiation has to be taken in account as well as its irradiance when studying its effects.Abbreviations CFU Colony Forming Units - UTC Universal Time Coordinates - UVB Ultra Violet B radiation (280–320 nm)  相似文献   

18.
Summary Respiratory energy losses in five species of ciliated protozoa, Tetrahymena pyriformis Ehrenberg, Vorticella microstoma Ehrenberg, Paramecium aurelia Ehrenberg, Spirostomum teres Claparède and Lachmann and Frontonia leucas Ehrenberg, were investigated at 8.5° C, 15° C and 20° C using Cartesian diver microrespirometry. Q 10 values of 1.15–2.24 were found for four of the species between 8.5–15° C, while in S. teres a Q 10 of 12.98 occurred between these temperatures. Between 15–20° C T. pyriformis and P. aurelia had Q 10 values of 3.73 and 1.56, respectively. Linear double log regressions of oxygen consumption vs. dry weight were derived at each temperature and regression coefficients (b) of 0.2723 (8.5° C), 0.4364 (15° C) and 0.4171 (20° C) were obtained. The results are explained and discussed in relation to previous work on the energetics of ciliated protozoa.  相似文献   

19.
Summary The combined effect of various temperatures and light intensities on the growth of seven species of antarctic diatoms in culture has been studied. With the exception of Chaetoceros deflandrei whose thermal tolerance is fairly good, these obligatory psychrophils cannot survive in temperatures above 6° to 9° C. Their mean growth rate is relatively low, between 0.24 div d–1 for Corethron criophilum and 0.63 div d–1 for C. deflandrei. Regardless of light intensity, growth rate increased with the temperature to reach a maximum between 3° and 5° C. The highest rates were obtained between 115 and 220 mol m–2 s–1 with 0.38 div d–1 for C. criophilum, 0.56 div d–1 for Synedra sp. and between 0.71 and 0.88 div d–1 for the other 5 species. A reduction in light intensity from 220 to 46 mol m–2 s–1 slowed growth by nearly 50%. These results suggest that the combined effect of temperature and light is one of the factors involved in the limitation of antarctic phytoplankton growth. The low temperatures of the environment do not permit rapid growth, which, even under optimal light conditions remains low. In addition, in the euphotic layer, the overall light energy available for algae is considerably reduced due to turbulence, a factor which exacerbates the reduced growth rate.  相似文献   

20.
The characteristics of water diffusional permeability (P) of human red blood cells were studied on isolated erythrocytes by a doping nuclear magnetic resonance technique. In order to estimate the basal permeability the maximal inhibition of water diffusion was induced by exposure of red blood cells to p-chloromercuribenzene sulfonate (PCMBS) under various conditions (concentration, duration, temperature). The lowest values of P were around 0.7×10–3 cm s–1 at 10°C, 1.2×10–3 cm s–1 at 15°C, 1.4×10–3 cm s–1 at 20°C, 1.8×10–3 cm s–1 at 25°C, 2.1×10–3 cm s–1 at 30°C and 3.5×10–3 cm s–1 at 37°C. The mean value of the activation energy of water diffusion (Ea,d) was 25 kJ/mol for control and 43.7 kJ/mol for PCMBS-inhibited erythrocytes. The values of P and Ea,d obtained after induction of maximal inhibition of water diffusion by PCMBS can be taken as references for the basal permeability to water of the human red blood cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号