共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effect of hydrogen peroxide on the activity of soxRS and oxyR regulon enzymes in different strains of Escherichia coli has been studied. Treatment of bacteria with 20 μM H2O2 caused an increase in catalase and peroxidase activities (oxyR regulon) in all strains investigated. It is shown for the first time that oxidative stress induced by hydrogen peroxide causes in some E. coli strains a small increase in activity of superoxide dismutase and glucose-6-phosphate dehydrogenase (soxRS regulon). This effect is cancelled by chloramphenicol, an inhibitor of protein synthesis in prokaryotes. The increase in soxRS regulon enzyme activities was not found in the strain lacking the soxR gene. These results provide evidence for the involvement of the soxRS regulon in the adaptive response of E. coli to oxidative stress induced by hydrogen peroxide. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1506–1513. Original Russian Text Copyright ? 2005 by Semchyshyn, Bagnyukova, Lushchak. 相似文献
3.
Chou CP 《Applied microbiology and biotechnology》2007,76(3):521-532
The advent of recombinant DNA technology has revolutionized the strategies for protein production. Due to the well-characterized genome and a variety of mature tools available for genetic manipulation, Escherichia coli is still the most common workhorse for recombinant protein production. However, the culture for industrial applications often presents E. coli cells with a growth condition that is significantly different from their natural inhabiting environment in the gastrointestinal tract, resulting in deterioration in cell physiology and limitation in cell’s productivity. It has been recognized that innovative design of genetically engineered strains can highly increase the bioprocess yield with minimum investment on the capital and operating costs. Nevertheless, most of these genetic manipulations, by which traits are implanted into the workhorse through recombinant DNA technology, for enhancing recombinant protein productivity often translate into the challenges that deteriorate cell physiology or even jeopardize cell survival. An in-depth understanding of these challenges and their corresponding cellular response at the molecular level becomes crucial for developing superior strains that are more physiologically adaptive to the production environment to improve culture productivity. With the accumulated knowledge in cell physiology, whose importance to gene overexpression was to some extent undervalued previously, this review is intended to focus on the recent biotechnological advancement in engineering cell physiology to enhance recombinant protein production in E. coli. 相似文献
4.
Production of Vanillin by Metabolically Engineered <Emphasis Type=Italic>Escherichia coli</Emphasis>
Yoon SH Li C Kim JE Lee SH Yoon JY Choi MS Seo WT Yang JK Kim JY Kim SW 《Biotechnology letters》2005,27(22):1829-1832
E. coli was metabolically engineered to produce vanillin by expression of the fcs and ech genes from Amycolatopsis sp. encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively. Vanillin production was optimized by leaky expression of the genes, under the IPTG-inducible trc promoter, in complex 2YT medium. Supplementation with glucose, fructose, galactose, arabinose or glycerol severely decreased vanillin production. The highest vanillin production of 1.1 g l−1 was obtained with cultivation for 48 h in 2YT medium with 0.2% (w/v) ferulate, without IPTG and no supplementation of carbon sources. 相似文献
5.
Nena Nwachuku Charles P. Gerba 《Reviews in Environmental Science and Biotechnology》2008,7(3):267-273
Escherichia coli O157:H7 has been associated with water related outbreaks. It has been isolated from surface and ground waters. It is capable of survival in water for days to weeks 相似文献
6.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of
qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate
qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA
acetate concentration (g L–1)
- cA,0
acetate concentration in the feed (g L–1)
- cG
glucose concentration (g L–1)
- cG,0
glucose concentration in the feed (g L–1)
- cP
pyruvate concentration (g L–1)
- cP,max
critical pyruvate concentration above which reaction cannot proceed (g L–1)
- cX
biomass concentration (g L–1)
- KI
inhibition constant for pyruvate production (g L–1)
- KIA
inhibition constant for biomass growth on acetate (g L–1)
- KP
saturation constant for pyruvate production (g L–1)
- KP
inhibition constant of Jerusalimsky (g L–1)
- KSA
Monod growth constant for acetate (g L–1)
- KSG
Monod growth constant for glucose (g L–1)
- mA
maintenance coefficient for growth on acetate (g g–1 h–1)
- mG
maintenance coefficient for growth on glucose (g g–1 h–1)
- n
constant of extended Monod kinetics (Levenspiel) (–)
- qV
volumetric flow rate (L h–1)
- qVA
volumetric flow rate of acetate (L h–1)
- qVG
volumetric flow rate of glucose (L h–1)
- rA
specific rate of acetate consumption (g g–1 h–1)
- rG
specific rate of glucose consumption (g g–1 h–1)
- rP
specific rate of pyruvate production (g g–1 h–1)
- rP,max
maximum specific rate of pyruvate production (g g–1 h–1)
- t
time (h)
- V
reaction (broth) volume (L)
- YP/G
yield coefficient pyruvate from glucose (g g–1)
- YX/A
yield coefficient biomass from acetate (g g–1)
- YX/A,max
maximum yield coefficient biomass from acetate (g g–1)
- YX/G
yield coefficient biomass from glucose (g g–1)
- YX/G,max
maximum yield coefficient biomass from glucose (g g–1)
-
growth associated product formation coefficient (g g–1)
-
non-growth associated product formation coefficient (g g–1 h–1)
-
specific growth rate (h–1)
- max
maximum specific growth rate (h–1) 相似文献
7.
de Maré L Velut S Ledung E Cimander C Norrman B Karlsson EN Holst O Hagander P 《Biotechnology letters》2005,27(14):983-990
A cultivation strategy combining the advantages of temperature-limited fed-batch and probing feeding control is presented. The technique was evaluated in fed-batch cultivations with E. coli BL21(DE3) producing xylanase in a 3 liter bioreactor. A 20% increase in cell mass was achieved and the usual decrease in specific enzyme activity normally observed during the late production phase was diminished with the new technique. The method was further tested by growing E. coli W3110 in a larger bioreactor (50 l). It is a suitable cultivation technique when the O2 transfer capacity of the reactor is reached and it is desired to continue to produce the recombinant protein.Revisions requested 13 April 2005; Revisions received 6 May 2005 相似文献
8.
P. D. Nguyen C.-L. Ho J. A. Harikrishna M. C. V.-L. Wong R. Abdul Rahim 《Trees - Structure and Function》2007,21(5):515-520
Salinity reduces plant growth and crop production globally. The discovery of genes in salinity tolerant plants will provide the basis for effective genetic engineering strategies, leading to greater stress tolerance in economically important crops. In this study, we have identified and isolated 107 salinity tolerant candidate genes from a mangrove plant, Acanthus ebracteatus Vahl by using bacterial functional assay. Sequence analysis of these putative salinity tolerant cDNA candidates revealed that 65% of them have not been reported to be stress related and may have great potential for the elucidation of unique salinity tolerant mechanisms in mangrove. Among the genes identified were also genes that had previously been linked to stress response including salinity tolerance, verifying the reliability of this method in isolating salinity tolerant genes by using E. coli as a host. 相似文献
9.
Kannika Na Lampang Virasakdi Chongsuvivatwong Rawee Teanpaisan Viroj Kitikoon 《World journal of microbiology & biotechnology》2008,24(9):1741-1746
The study was conducted to quantify the concordance of antibiotic resistance and ERIC-PCR DNA fingerprint pattern in Escherichia coli (E. coli) isolated from farmers and their broilers of 95 broiler farms in Songkhla province, Thailand. Four hundred and fifty-seven and 460 E. coli isolates from both groups produced 35 patterns of antibiotics resistance. Mono-resistance to doxycycline (23.2%) in isolates from farmers and multiple resistance to doxycycline, nalidixic acid, norfloxacin and ciprofloxacin (17.8%) were the most common finding in broilers. Twenty-seven farms had 44 within-farm concordant patterns of resistance. From simulation, the frequency of concordance was significantly higher than concordance by chance alone (P < 0.05). Out of these 44 matched sets, only four had the same DNA fingerprint pattern. Concordance by DNA pattern was also not associated with phenotypic resistance. Clonal spread is therefore not a good explanation of the concordance in this population. Other mechanisms need further analysis. 相似文献
10.
Natural plasmid transformation in<Emphasis Type="Italic">Escherichia coli</Emphasis> 总被引:3,自引:0,他引:3
Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli. 相似文献
11.
Khalilzadeh R Mohammadian-Mosaabadi J Bahrami A Nazak-Tabbar A Nasiri-Khalili MA Amouheidari A 《Journal of industrial microbiology & biotechnology》2008,35(12):1643-1650
The fed-batch process using glucose as the sole source of carbon and energy with exponential feeding rate was carried out
for high cell density cultivation of recombinant Escherichia coli BL21 (DE3) expressing human granulocyte-colony stimulating factor (hG-CSF). IPTG was used to induce the expression of hG-CSF
at 48 g dry cell wt l−1 during high cell density culture of recombinant E. coli BL21 (DE3) [pET23a-g-csf]. The final cell density, specific yield and overall productivity of hG-CSF were obtained as ~64 g
dry cell wt l−1, 223 mg hG-CSF g−1 dry cell wt and 775 mg hG-CSF l−1 h−1, respectively. The resulting purification process used cell lysis, inclusion body (IB) preparation, refolding, DEAE and Butyl-Sepharose.
Effects of different process conditions such as cell lysis and washing of IB were evaluated. The results reveal that the cells
lyzed at 1,200 bar, 99.9% and Triton removed about 64% of the LPS but sarcosyl had no effect on removal of nucleic acids and
LPS. Further analysis show that DEAE column removes DNA about 84%. Cupper concentration was identified as parameter that could
have a significant impact on aggregation, as an unacceptable pharmaceutical form that decrease process yields. The purity
of purified hG-CSF was more than 99%. Also the comparison of activity between purified hG-CSF and commercial form do not show
valuable decrease in activity in purified form. 相似文献
12.
The effect of kanamycin on the electrophysical parameters of cell suspensions of Escherichia coli K-12 and pMMB33 was investigated. Incubation of the sensitive K-12 strain with kanamycin resulted in significant changes in the orientation spectra (OS) of the cell suspensions; these changes were not revealed in the case of the resistant pMMB33 strain. In the case of the sensitive K-12 strain incubated with different kanamycin concentrations, changes in the OS of the cell suspensions occurred within the 10–1000 kHz frequency range of the orienting electrical field. The most pronounced change in the electrooptical signal was observed at 10 μg/ml of kanamycin. Control experiments were carried out by standard plating on nutrient media. Thus, the OS changes of suspensions in the presence of antibiotics may be used as a test for microbial resistance to such antibiotics. 相似文献
13.
A hypothesis that the pattern of spatial leaf distribution in forest canopies is numerically related to the exponent of the self-thinning relationship in even-aged monocultures was tested by evaluating the crown fractal dimension of Pinus banksiana (jack pine) and Populus tremuloides (quaking aspen) in Wood Buffalo National Park, Canada. Pure species stands that were considered the most dense for a given mean tree size were measured to establish the empirical self-thinning relationships. The value of the self-thinning exponent was estimated as –1.42 with 95% Confidence Interval (CI) (–1.47, –1.36) for Pinus banksiana, and –1.29 with 95% CI (–1.45, –1.14) for Populus tremuloides. For each species the box dimension of spatial leaf distribution was estimated from unit cylinders described by sequentially lowering in forest canopies, horizontal flaps of one of various diameters attached to the top of a height-measuring pole. The box dimension appeared as 1.95 (1.84, 2.06) for Pinus banksiana, and 2.24 (2.05, 2.43) for Populus tremuloides. By assuming that the box dimension is equivalent to the fractal dimension at the inter-population level, the self-thinning exponent was predicted to be –1.53 (–1.62, –1.45) for Pinus banksiana, and –1.33 (–1.45, –1.23) for Populus tremuloides. The empirical exponent was equivalent to that predicted from the box fractal dimension, as judged by the 95% CI of the dimensions. We conclude that spatial patterns of leaf distribution in forest canopies, as being characterized by the box fractal dimension, are closely related to the value of the self-thinning exponent in the dense monocultures of the species we examined. 相似文献
14.
In Shigella and enteroinvasive Escherichia coli (EIEC), the etiologic agents of shigellosis in humans, the determinants responsible for entry of bacteria into and dissemination within epithelial cells are encoded by a virulence plasmid. To understand the evolution of the association between the virulence plasmid and the chromosome, we performed a phylogenetic analysis using the sequences of four chromosomal genes (trpA, trpB, pabB, and putP) and three virulence plasmid genes (ipaB, ipaD, and icsA) of a collection of 51 Shigella and EIEC strains. The phylogenetic tree derived from chromosomal genes showed a typical star phylogeny, indicating a fast diversification of Shigella and EIEC groups. Phylogenetic groups obtained from the chromosomal and plasmidic genes were similar, suggesting that the virulence plasmid and the chromosome share similar evolutionary histories. The few incongruences between the trees could be attributed to exchanges of fragments of different plasmids and not to the transfer of an entire plasmid. This indicates that the virulence plasmid was not transferred between the different Shigella and EIEC groups. These data support a model of evolution in which the acquisition of the virulence plasmid in an ancestral E. coli strain preceded the diversification by radiation of all Shigella and EIEC groups, which led to highly diversified but highly specialized pathogenic groups. 相似文献
15.
J. Packers 《Journal of biosciences》2002,27(6):573-578
For much of the last hundred years most cases of amoebiasis have been diagnosed by light microscopy. Only relatively recently have we become aware that this technique is usually incapable of distinguishing between two species-Entamoeba histolytica andE. dispar-only the first of which is a pathogen. The implications of this for patient management and, even more, for the validity of epidemiological surveys, are only slowly being addressed. What is clear is that methods are urgently required to distinguish between infections with these two species and this review attempts to summarise some of those, which have been developed to meet this need. 相似文献
16.
Analysis of the oligonucleotide composition of the complete E. coli genome and its σ70-specific promoters shows that promoter DNA mainly contains AT-rich hexanucleotides that have functionally important physical properties (propensity to form ‘low-melting’ regions and helix bends). Comparative analysis of the electrostatic characteristics reveals that hexanucleotides corresponding to more electronegative surroundings are mostly found in promoter DNA. 相似文献
17.
A combinatorial approach was used to study putative interactions among six ionizable residues (Asp-240, Glu-269, Arg-302, Lys-319, His-322, and Glu-325) in the lactose permease. Neutral mutations were made involving five ion pairs that had not been previously studied. Double mutants, R302L/E325Q and D240N/H322Q, had moderate levels of downhill [14C]-lactose transport. Mutants in which only one of these six residues was left unchanged (pentuple mutants) were also made. A Pent269− mutant (in which only Glu-269 remains) catalyzed a moderate level of downhill lactose transport. Pent240− and Pent 322+ also showed low levels of downhill lactose transport. Additionally, a Pent240− mutant exhibited proton transport upon addition of melibiose, but not lactose. This striking result demonstrates that neutralization of up to five residues of the lactose permease does not abolish proton transport. A mutant with neutral replacements at six ionic residues (hextuple mutant) had low levels of downhill lactose transport, but no uphill accumulation or proton transport. Since none of the mutants in this study catalyzes active accumulation of lactose, this is consistent with other reports that have shown that each residue is essential for proper coupling. Nevertheless, none of the six ionizable residues is individually required for substrate-induced proton cotransport. These results suggest that the H+ binding domain may be elsewhere in the permease or that cation binding may involve a flexible network of charged residues.This revised version was published online in August 2005 with a corrected cover date. 相似文献
18.
Human pigment epithelium-derived factor (PEDF), a neurotrophic factor, is the most potent natural inhibitor of angiogenesis. To produce the active PEDF, the gene coding for the human PEDF protein was expressed in E. coli. The rPEDF protein was expressed at 457 mg l–1 as a soluble protein. The yield of purified GST fusion protein was 14 mg ll–1. Purified rPEDF inhibited tube formation in endothelial cells.Revisions requested 30 November 2004; Revisions received 25 January 2005 相似文献
19.
Escherichia coli strain BL21 is commonly used as a host strain for protein expression and purification. For structural analysis, proteins are frequently isotopically labeled with deuterium (2H), 13C, or 15N by growing E. coli cultures in a medium containing the appropriate isotope. When large quantities of fully deuterated proteins are required, E. coli is often grown in minimal media with deuterated succinate or acetate as the carbon source because these are less expensive. Despite the widespread use of BL21, we found no data on the effect of different minimal media and carbon sources on BL21 growth. In this study, we assessed the growth behavior of E. coli BL21 in minimal media with different gluconeogenic carbon sources. Though BL21 grew reasonably well on glycerol and pyruvate, it had a prolonged lag-phase on succinate (20 h), acetate (10 h), and fumarate (20 h), attributed to the physiological adaptation of E. coli cells. Wild-type strain NCM3722 (K12) grew well on all the substrates. We also examined the growth of E. coli BL21 in minimal media that differed in their salt composition but not in their source of carbon. The commonly used M9 medium did not support the optimum growth of E. coli BL21 in minimal medium. The addition of ferrous sulphate to M9 medium (otherwise lacking it) increased the growth rate of E. coli cultures and significantly increased their cell density in the stationary phase. An erratum to this article can be found at 相似文献
20.
Matsui T Sato H Yamamuro H Shinzato N Matsuda H Misawa S Sato S 《Applied microbiology and biotechnology》2008,80(5):779-783
The copy number of a plasmid, pUC-based vector, was previously shown to be affected by culture temperature. In this study, intracellular hirudin variant 1 (f-HV1) fused to porcine adenylate kinase protein was produced using recombinant Escherichia coli by temperature shift cultivation coupled with a high cell density cultivation technique for E. coli JM109. The optimal temperature for cellular growth suppressing f-HV1 production was 33 degrees C, resulting in a final dried cell concentration of 45.7 g/l, with a specific growth rate of 0.54 1/h. Optimizing the temperature-shift conditions (temperature shifted to an OD660 nm of 15 from 33 degrees C to 37 degrees C) resulted in the production of f-HV1 up to 4763 mg/l as an inclusion body with dried cell concentration of 44 g/l in 18 h. 相似文献