首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I Kawamoto  T Oka    T Nara 《Journal of bacteriology》1981,146(2):527-534
Cell walls of 19 Micromonospora species were analyzed for their components. All the cell walls had xylose and arabinose, but the presence of glucose, galactose, mannose, or rhamnose depended on the strain. Amino acids present in the walls consisted of glycine, glutamic acid, diaminopimelic acid, and alanine, in a molar ratio of approximately 1:1:1:0.6--0.8. 3-Hydroxydiaminopimelic acid, together with meso-diaminopimelic acid, was found in many species and was isolated from Micromonospora olivoasterospora to compare the color constant in an amino acid analyzer with that of meso-diaminopimelic acid. The cell walls of Micromonospora sagamiensis and M. olivoasterospora contained only D-alanine and not L-alanine. All species tested except Micromonospora globosa contained glycolate in an almost equimolar ratio to diaminopimelic acid in their cell walls. Among 45 strains of 12 genera examined, Actinoplanes, Ampullariella, Amorphosporangium, and Dactylosporangium species had a significant amount of glycolate in the whole cells. Based on these results, the primary structure of the peptidoglycan of Micromonospora is discussed.  相似文献   

2.
The gum exudate from Combretum hartmannianum is water-soluble, forms very viscous solutions, and contains galactose (22%), arabinose (43%), mannose (10%), xylose (6%), rhamnose (4%), glucuronic acid (6%), 4-O-methylglucuronic acid (2%), and galacturonic acid (7%). The acidic components produced on hydrolysis of the gum were 6-O-(β-D-glucopyranosyluronic acid)-D-galactose, and two saccharides that had the same chromatographic mobility, and contained mannose and galacturonic acid, and galactose and 4-O-methylglucuronic acid, respectively. Methylation and methanolysis of the gum indicated the presence of terminal uronic acid, rhamnose, xylose, galactose, arabinofuranose, and arabinopyranose. Controlled, acid hydrolysis indicated the presence of (1→3)-linked arabinopyranose side-chains and (1→6)-linked galactose residues. C. hartmannianum gum, when subjected to two Smith-degradations, yielded Polysaccharides I and II, both of which contained galactose, arabinose, and mannose. Insufficient crude gum was available for a complete structural study, but the molecule was shown to contain long, sparsely branched chains of (1→6)-linked galactose residues, to which are attached (1→3)-linked arabinose and (1→3)-linked mannose side-chains.  相似文献   

3.
Bacteroides ovatus is a Gram-negative obligate anaerobe that was isolated from the human colon and is capable of utilizing xylan. The objective of this study was to evaluate the ability of B. ovatus V975 to digest maize bran, oat bran, and wheat bran as well as the isolated cell walls from each bran source. Strain V975 was incubated in basal medium that contained either 0.1 or 0.3 g of each bran or each bran cell wall for 0, 24, 48, and 72 h. Acetate and succinate were the main products detected from each fermentation; however, less of each end product was produced from the isolated cell walls than from each bran. More of the oat bran was digested (in vitro dry matter disappearance = 74.8%) during the 72 h incubation than any other bran source. While each bran contained arabinose and xylose, more glucose, galactose, and mannose were utilized by strain V975 during the 72-h incubation than either pentose sugar. Compared with each bran, the bran cell walls had lower concentrations of most sugars, and more glucose than any other sugar was utilized by strain V975. These results suggest that strain V975 preferentially utilizes glucose, galactose, and mannose in each bran, while glucose is the main sugar fermented in bran cell walls. Received: 19 June 1997 / Accepted: 31 July 1997  相似文献   

4.
The distribution of polysaccharides from the seed cell walls of 57 samples of Vochysiaceae native to Brazil were studied, comprising 16 species distributed among the genera Callisthene, Qualea, Salvertia and Vochysia. The polysaccharides were extracted with hot water, then hydrolyzed with the resulting monomers analyzed by HPLC. All samples yielded arabinose, galactose, glucose. mannose and rhamnose, the relative amounts of each monomer, however, varying from one sample to another. Arabinose was always the predominant component, which implies that it might possibly be used as a marker of the Vochysiaceae. The quantitative distribution of monosaccharides was similar between the species of Qualea and Callisthene, characterized by the predominance of arabinose and mannose, and between the species of Salvertia and Vochysia, which contained higher amounts of arabinose and galactose. Such results are consistent with affinities inferred from floral morphology, wood anatomy and molecular data. Substantial intraspecific variation was observed for some species. UPGMA analysis based on the distribution of the monosaccharides reveals two main clusters, according to the links commented above. The resultant phenogram is not coherent with the current sectional classification of the Vochysiaceae, but the differences in the monosaccharides distribution between the two clusters are strongly supported by ANOVA.  相似文献   

5.
The cell-wall polysaccharides from different parts of maize roots have been analysed. The arabinose, galactose and mannose contents are influenced by cell differentiation, whereas xylose, rhamnose and uronic-acid contents are not. In cap cells, the pectin content is low but rhamnose and fucose are present in larger quantities. The cell-wall polysaccharides from cells of the elongation zone and their respective regenerating protoplasts were also analysed. The walls of the protoplasts contained higher xylose and mannose levels and a much lower level of cellulose than the cells from which they were derived.  相似文献   

6.
The thermally induced changes in the cell wall polysaccharides of Blastomyces dermatitidis strain BD64, which produces a yeastlike form (Y form) at 37 C and a mycelial form (M form) at 20 C, were examined. The cell walls of the Y and M forms contained 36 and 51% of hexoses, respectively. The M-form cell wall contained glucose, galactose, and mannose in a molar ratio of 1:0.1:0.2. The Y-form cell wall contained mainly glucose and a very small amount of galactose and mannose. The glucans of the cell wall of the Y form consisted of about 95% alpha-glucan and 5% beta-glucan, whereas those of the M-form cell wall consisted of about 60% alpha-glucan and 40% beta-glucan.  相似文献   

7.
Sugar compositions of cell walls of dark-grown coleoptiles from12 barley strains, 11 of which were coleoptilar semi-dwarf strains,were analyzed on days 2 and 3 after germination. Major wallcomponents of the 12 strains were arabinose, xylose, and glucosein hemicellulose and cellulose; minor components were galactoseand mannose. The sugar content of each wall component per unit length wasnot correlated to any growth parameters calculated from a logisticequation simulating coleoptile growth, but the relative contentsof galactose and mannose in relation to the total wall sugarcontent was correlated to the growth rate on day 3 and the growthcontinuing period. These facts suggest that growth of these12 barley strains in the late growth stage is regulated by theminor wall components, galactose and mannose. 1 Dedicated to the late Professor Joji Ashida. (Received October 12, 1982; Accepted January 12, 1983)  相似文献   

8.
Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening   总被引:26,自引:17,他引:9       下载免费PDF全文
Changes in neutral sugar, uronic acid, and protein content of tomato (Lycopersicon esculentum Mill) cell walls during ripening were characterized. The only components to decline in amount were galactose, arabinose, and galacturonic acid. Isolated cell walls of ripening fruit contained a water-soluble polyuronide, possibly a product of in vivo polygalacturonase action. This polyuronide and the one obtained by incubating walls from mature green fruit with tomato polygalacturonase contained relatively much less neutral sugar than did intact cell walls. The ripening-related decline in galactose and arabinose content appeared to be separate from polyuronide solubilization. In the rin mutant, the postharvest loss of these neutral sugars occurred in the absence of polygalacturonase and polyuronide solubilization. The enzyme(s) responsible for the removal of galactose and arabinose was not identified; a tomato cell wall polysaccharide containing galactose and arabinose (6:1) was not hydrolyzed by tomato β-galactosidase.  相似文献   

9.
The degradation of cell walls isolated from stems and leaves of perennial ryegrass by the anaerobic fungus Neocallimastix sp. strain CS3b was studied in a defined medium. The combined cellulose and hemicellulose fraction represented 53.1 (wt/wt) and 63.3% (wt/wt) of the dry weight of control grass leaf and stem cell walls, respectively. In both leaf and stem cell walls, glucose was the major neutral monosaccharide, followed by xylose, arabinose, and galactose. After 2 days of fermentation with Neocallimastix sp. strain CS3b, treated cell walls contained smaller amounts of neutral sugars compared with those of undigested cell walls. These results were more evident for glucose, xylose, and arabinose than for galactose. Furthermore, the sugar content of leaf cell walls decreased before a decline in the sugar content of stem cell walls was observed. Data from formate and hydrogen production indicated that the growth of Neocallimastix sp. strain CS3b was completed in 4 days in the culture system used. During this period, the fungus liberated about 95% of the fermentable sugars in untreated material. On a percentage basis, no significant differences were found in final extent of degradation of glucose, xylose, and arabinose. Galactose, however, was degraded to a lesser extent.  相似文献   

10.
The carbohydrate compositions of cell wall were determined in the strains of class Urediniomycetes, mainly ballistoconidium-forming yeasts and related taxa. The major component of cell wall was mannose, and glucose was included as the second component, but xylose was not detected in any strain. Out of 41 strains examined, 39 contained galactose, 14 contained arabinose and 12 contained rhamnose. As a minor component, fucose was detected in 30 strains but not in 11 strains. A phylogenetic tree based on 18S rDNA sequences indicated that the fucose-lacking strains, Erythrobasidium hasegawianum, Rhodotolura aurantiaca, R. lactosa, R. minuta, Sakaguchia dacryoidea, Sporobolomyces coprosmae, S. elongatus, S. folicola, S. gracilis, S. kluyverinielii and S. oryzicola, constituted a distinct cluster from those strains which contained fucose. This cluster corresponded to one of the five subclusters, the Erythrobasidium cluster, in the phylogenetic tree of class Urediniomycetes. The carbohydrate composition of cell wall is believed to reflect the phylogenetic relationships among basidiomycetous fungi. The presence or absence of fucose in cell wall should be regarded as an important phenotypic characteristic in the taxonomy of basidiomycetes.  相似文献   

11.
The composition of walls isolated from pollen grains of the seagrass Amphibolis antarctica was determined. Glucose, galactose, and rhamnose were the major neutral monosaccharides in the wall polysaccharides, and fucose, arabinose, xylose, and mannose were present in minor proportions. No apiose, a monosaccharide present in the wall polysaccharides of the vegetative parts of the seagrass Heterozostera tasmanica, was found. Large amounts of uronic acid (mainly as galacturonic acid) were found in the walls. The monosaccharides were probably present in cellulose and pectic polysaccharides, the latter comprising neutral pectic galactans, and rhamnogalacturonans containing high proportions of rhamnose. The walls contained a small amount of protein; glycine and lysine were the amino acids present in the highest proportions. Histochemical examination of isolated walls confirmed the presence of polyanionic components (pectic polysaccharides), -glucans (cellulose), and protein. The composition of the walls is discussed in relation to analyses of the walls of pollen grains and vegetative organs of other plants.  相似文献   

12.
Endoplasmic preparations from 22Dermatophilus strains were examined chromatographically, chemically and serologically.Chromatography revealed that the endoplasms contained lipids and nucleo-polypeptide-polysaccharides; glucosamine, galactose, mannose and arabinose, eight different amino-acids, 3 to 4 high-molecular-weight fatty acids and ribo- and deoxyribonucleic acids were detected in the endoplasm preparations. They contained one or possibly two antigenic components. Five endoplasm sero-groups were distinguished forDermatophilus. Some cross-reactivity withNocardia caviae andN. turbata endoplasms was detected by the complement-fixation test.  相似文献   

13.
Protoplast isolation from endosperms of developing carob (Ceratonia siliqua L.) seeds is reported for the first time. These protoplasts regenerated cell walls within 12 h. In order to assess their potential for galactomannan biosynthesis, the incorporation of radioactivity in the regenerated cell wall polysaccharides (CWP) and extracellular polysaccharides (ECP), after feeding these protoplasts with D-[U-14C]glucose or D-[U-14C]mannose was studied. The pattern of the radioactive label distribution in the neutral sugars of the trifluoroacetic acid (TFA) hydrolysate of CWP was different from that of the ECP. In the TFA hydrolysis products of the CWP, immediately after protoplast isolation, the greatest level of radioactivity (approximately 90%) was detected in glucose, galactose and mannose. After 2 days protoplast culture, the label in mannose increased. In contrast, immediately after protoplast isolation, approximately 90% of radioactivity of the ECP was detected in galactose and mannose. However, during culture, the radioactivity incorporation in mannose dropped to one third, while that in galactose and arabinose increased significantly. Hydrolysis of the CWP and ECP with -galactosidase and endo--mannanase confirmed that, at least part of mannose and galactose belonged to galactomannan molecules. These results were compared with those obtained upon feeding developing endosperm tissue with D-[U-14C]mannose. From our results we concluded that protoplasts from endosperm tissues of developing carob seeds, retained the ability of their original explant to synthesize galactomannan, making protoplasts candidates for the study of galactomannan biosynthesis.  相似文献   

14.
Cell walls prepared from the endosperm tissue of hydrated lettuce (Lactuca sativa L.) seeds undergo autohydrolysis. Release of carbohydrates is most rapid (0.4-0.6 [mu]g per endosperm) within the 1st h of incubation in buffer, but substantial autolysis is sustained for at least 10 h. Autolysis is temperature sensitive, and the optimum rate occurs at pH 5. The rate of autolysis increases markedly in the period just prior to radicle emergence. The cell-wall polysaccharide composition in micropylar and lateral endosperm regions differs significantly; the micropylar walls are rich in arabinose and glucose with substantially lower amounts of mannose. Although walls prepared from both micropylar and lateral regions undergo autolysis, micropylar walls release carbohydrates at a higher rate than lateral walls. Autolysis products elute as large polymers when subjected to size-exclusion chromatography, suggesting that endo-enzyme activity is responsible for release of fragments containing arabinose, galactose, mannose, and uronic acids. Arabinose, galactose, mannose, and glucose are also released as monomers. As a function of time, the ratio of polymers to monomers decreases, indicating that exo-enzyme activity is also present. Thermoinhibition or treatment with abscisic acid suppresses germination and reduces the rates of autolysis of walls isolated from the endosperm by about 25%. Treatments that alleviate thermoinhibition (kinetin and gibberellic acid) increase the rates of autolysis by 20 to 30% when compared to thermoinhibited controls.  相似文献   

15.
The aim of this study was to isolate protoplasts from carob (Ceratonia siliqua L.) embryonic tissues with the ability to regenerate cell walls, divide and synthesize galactomannan, a valuable polysaccharide for industry. Protoplasts isolated from carob hypocotyl hooks regenerated cell walls within 24 h. The first divisions of the regenerated cells were observed after 2 days of culture. The highest percentage that successfully divided was achieved when the seedlings were grown under diffuse light, the hypocotyl hooks were plasmolysed for 1 h before incubation in the protoplast isolation solution and the protoplasts were cultured under diffuse light. After 9 days of culture, cell clusters, consisting of eight cells, had been produced, which underwent further mitotic divisions and which were expected to lead to callus formation. Polysaccharide and oligosaccharide synthesis during protoplast regeneration was studied by radiolabelling with exogenous d ‐[U‐14C]glucose, d ‐[U‐14C]mannose or d ‐[2‐3H]mannose, which gave rise to uniform, moderately specific and highly specific labelling, respectively. As revealed by the radioactivity distribution in cell wall monosaccharides, the regenerants deposited new wall polymers that differed markedly from those being synthesized by the hypocotyls from which the protoplasts had been isolated. The regenerants deposited large amounts of callose and smaller amounts of galactose‐, arabinose‐ and mannose‐containing polymers. The latter included glucuronomannan, as demonstrated by a new method involving partial acid hydrolysis followed by β‐glucuronidase (EC 3.2.1.31) digestion. The regenerating protoplasts also released soluble extracellular carbohydrates: polysaccharides which appeared to be mainly acidic arabinogalactans, and oligosaccharides which were mainly neutral and contained glucose, galactose and mannose. We conclude that regenerating carob protoplasts are a useful system for studying carbohydrate secretion, including mannose‐rich poly‐ and oligosaccharides.  相似文献   

16.
Previously, we have shown that the monomeric-sugar composition of cell-surface-associated glycoconjugates of two strains of Chlamydomonas eugametos, of different mating type, differs strikingly (Gerwig et al. 1984, Carbohydr. Res. 127, 245–251). Besides the common occurrence of various pentoses and hexoses, the glycoconjugates of one strain contain 4-O-methyl xylose, a 2-O-methyl pentose (probably 2-O-methyl arabinose) and 3-O-methyl galactose, whereas those of the other strain contain 6-O-methyl mannose and 3-O-methyl glucose. In order to investigate whether these differences are relevant to the mating process of this organism, the sugar composition of the sexual progeny of these strains was analyzed. The ability to produce 4-O-methyl xylose, 2-O-methyl pentose and 3-O-methyl galactose on the one hand, and the ability to produce 6-O-methyl mannose and 3-O-methyl glucose on the other hand, appear to be genetically linked. However, the ability to produce either set of O-methyl sugars was inherited independently of mating type. O-Methylated sugars do not occur in the cell wall of C. eugametos, or in the cell-free medium, but only in surface-membrane-associated glycoconjugates, extractable with salt or detergent solutions.Abbreviation mt +/- mating-type plus or minus  相似文献   

17.
Conidial walls of wild-type and white mutantAspergillus nidulans were purified. Chemical analysis showed that the conidial wall of the wild-type strain contained neutral carbohydrate, protein, chitin, melanin, and small amounts of lipid. The neutral sugars were glucose, galactose, and mannose. Chemical fractionation experiments indicated the presence of -1,3-glucan in the wild-type conidial wall. The conidial wall of the white mutant strain lacked melanin and -1,3-glucan, and contained twice as much galactose as that of the wild-type strain. The protein(s) of the white mutant wall contained fifteen amino acids. Transmission electron microscopy showed that the wild-type conidial wall was composed of an electron-dense outer layer, irregular in thickness and containing the -1,3-glucan, an electron-translucent middle layer, and a thin inner layer intimately associated with the plasma membrane. Conidial walls of the white mutant strain lacked the electron-dense outer layer.  相似文献   

18.
The preparation and chemical poperties of the cell walls of Leptospira biflexa Urawa and Treponema pallidum Reiter are described. Both cell walls are composed mainly of polysaccharides and peptidoglycans. The data of chemical analysis indicate that the cell wall of L. biflexa Urawa contains rhamnose, arabinose, xylose, mannose, galactose, glucose and unidentified sugars as neutral sugars, and alanine, glutamic acid, α,ε-diaminopimelic acid, glucosamine and muramic acid as major amino acids and amino sugars. As major chemical constituents of the cell wall of T. pallidum Reiter, rhamnose, arabinose, xylose, mannose, galactose, glucose, alanine, glutamic acid, ornithine, glycine, glucosamine and muramic acid have been detected. The chemical properties of protein and polysaccharide fractions prepared from the cells of T. pallidum Reiter were also partially examined.  相似文献   

19.
Lipopolysaccharides were prepared from 9Agrobacterium and 16Rhizobium strains. Glucose and rhamnose were the only monosaccharides present in all preparations, but mannose, glucosamine and 4-O-methylglucuronic acid were common components. Fucose (present in 9 strains), galactose (10 strains), xylose (3 strains) and arabinose (1 strain) were also detected but there was no evidence of dideoxy sugars, of heptose, or of other hexosamines. The possible significance of the results in the serological classification ofRhizobium andAgrobacterium, and in host selection ofRhizobium is discussed.  相似文献   

20.
Specific growth rates of Bacteroides thetaiotaomicron NCTC 10582 with either glucose, arabinose, mannose, galactose or xylose as sole carbon sources were 0.42/h, 0.10/h, 0.38/h, 0.38/h and 0.16/h respectively, suggesting that hexose metabolism was energetically more efficient than pentose fermentation in this bacterium. Batch culture experiments to determine whether carbohydrate utilization was controlled by substrate-induced regulatory mechanisms demonstrated that mannose inhibited uptake of glucose, galactose and arabinose, but had less effect on xylose. Arabinose and xylose were preferentially utilized at high dilution rates (D > 0.26/h) in carbon-limited continuous cultures grown on mixtures of arabinose, xylose, galactose and glucose. When mannose was also present, xylose was co-assimilated at all dilution rates. Under nitrogen-limited conditions, however, mannose repressed uptake of all sugars, showing that its effect on xylose utilization was strongly concentration dependent. Studies with individual D-ZU-14C]-labelled substrates showed that transport systems for glucose, galactose, xylose and mannose were inducible. Measurements to determine incorporation of these sugars into trichloroacetic acid-precipitable material indicated that glucose and mannose were the principal precursor monosaccharides. Xylose was only incorporated into intracellular macromolecules when it served as growth substrate. Phosphoenolpyruvate:phosphotransferase systems were not detected in preliminary experiments to elucidate the mechanisms of sugar uptake, and studies with inhibitors of carbohydrate transport showed no consistent pattern of inhibition with glucose, galactose, xylose and mannose. These results indicate the existence of a variety of different systems involved in sugar transport in B. thetaiotaomicron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号