共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Boris S. Zhorov Nina B. Brovtsyna Valeriy E. Gmiro Nera Ya. Lukomskaya Sergei E. Serdyuk Natalva N. Potapyeva Lev G. Magazanik Dmitriy E. Kurenniy Vladimir I. Skok 《The Journal of membrane biology》1991,121(2):119-132
Summary Relationship between the size of the molecule in the series of organic ions Et3N–(CH2)5–N+R1R2R3 (R
i
-alkyl or cycloalkyl substituents) and their abilities to block nicotinic acetylcholine receptors (AChRs) due to their open-channel blockade in the neurons of autonomic ganglia and in frog end-plate was analyzed.All low-energy equilibrium conformations of the drugs were calculated by the molecular mechanics method. A unique rectangular channel profile 6.1×8.3 Å. for which the best correlation between blocking activity of the drugs and total population of their conformations being able to penetrate into the channel, was deduced from all those tested. 相似文献
3.
The nicotinic acetylcholine (ACh) receptor belongs to a superfamily of synaptic ion channels that open in response to the binding of chemical transmitters. Their mechanism of activation is not known in detail, but a time-resolved electron microscopic study of the muscle-type ACh receptor had suggested that a local disturbance in the ligand-binding region and consequent rotations in the ligand-binding alpha subunits, connecting to the transmembrane portion, are involved. A more precise interpretation of this structural change is given here, based on comparison of the extracellular domain of the ACh receptor with an ACh-binding protein (AChBP) to which a putative agonist is bound. We find that, to a good approximation, there are two alternative extended conformations of the ACh receptor subunits, one characteristic of either alpha subunit before activation, and the other characteristic of all three non-alpha subunits and the protomer of AChBP. Substitution in the three-dimensional maps of alpha by non-alpha subunits mimics the changes seen on activation, suggesting that the structures of the alpha subunits are modified initially by their interactions with neighbouring subunits and switch to the non-alpha form when ACh binds. This structural change, which entails 15-16 degrees rotations of the inner pore-facing parts of the alpha subunits, most likely acts as the trigger that opens the gate in the membrane-spanning pore. 相似文献
4.
Unwin N 《Journal of molecular biology》2005,346(4):967-989
5.
The nicotinic acetycholine receptor was subjected to photoaffinity labeling in different conformational and functional states. The photolabel used was the ion-channel blocker [3H]-TPMP+. A procedure is described for isolating labeled -polypeptide chains from the receptor complex by preparative SDS-polyacrylamide gel electrophoresis. The photolabel was localized in the primary structure of the -chain. The site of labeling was found to be identical when photoaffinity labeling was performed in the resting, desensitized, or antagonist state, respectively. 相似文献
6.
7.
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that rapidly convert a chemical signal into an electrical signal. Although the structure of the nAChR is quite well described, the coupling between agonist binding and channel gating is still under debate. In this study, we probed local conformational transitions on the neuronal α4β4 nAChR by specifically tethering a conformation-sensitive fluorescent dye on αG98C located on loop 5 (L5), and simultaneously monitoring fluorescence intensity and current after expression in Xenopus oocytes. The potency of acetylcholine (ACh) was significantly higher in the cysteine mutant and further increased upon tetramethylrhodamine-6-maleimide labeling, suggesting a role of L5 in binding or gating. Structural reorganizations of L5 were shown to occur upon activation, as revealed by the fluorescence intensity increase during ACh exposure. Fluorescence changes were also detected at ACh concentrations lower than needed for current activation, suggesting a movement of L5 for a closed, resting or desensitized state. The competitive antagonist dihydro-β-erythroidine also induced a movement of L5 although at concentrations significantly higher than needed for current inhibition. Consequently L5, located inside the lumen of the pentamer, plays a role in both activation and inhibition of the nAChR. 相似文献
8.
Mohyee E. Eldefrawi Gordon Schweizer Nabil M. Bakry James J. Valdes 《Journal of biochemical and molecular toxicology》1988,3(1):21-32
The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-α-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites. 相似文献
9.
Vesna A. Eterović Lian Li Andrew Palma Mark G. McNamee 《Cellular and molecular neurobiology》1990,10(3):423-433
1. Nicotinic acetylcholine receptors (nAChR)4 from BC3H1 cells (which express a skeletal muscle-type receptor) and from Torpedo californica electric organ were expressed in Xenopus laevis oocytes and studied with a voltage-clamp technique. 2. We found that bath application of ATP in the micromolar to millimolar range increased the ACh-elicited current in both muscle and electrocyte receptors. The effect of ATP increased with successive applications. This "use-dependent" increase in potentiation was Ca2+ dependent, while the potentiation itself was not. 3. Four other nucleotides were tested on muscle nAChR: ADP, AMP, adenosine, and GTP. Of these, only ADP was a potentiator, but its effect was not use dependent. Neither ATP nor ADP affected the resting potential of the oocyte membrane. 4. ADP potentiated the response to suberyldicholine and nicotine, as well as ACh. 5. Finally, ADP reversed the phencyclidine-induced block of ACh currents in oocytes expressing muscle nAChR. 相似文献
10.
11.
Binding of agonists to nicotinic acetylcholine receptors (nAChR) is coupled to channel opening through local rearrangements of different domains of the protein. Recent structural data suggest that two of these regions could be the loop 5 (L5) and the β-strand β6', both forming the inner part of the N-terminal domain. Amino acids in these domains were mutated in α7 nAChRs, and expression levels and functional responses of mutant receptors were measured. Mutations located at the putative apex of L5, Asp97 and Glu98, and also at Phe100, gave receptors with smaller currents, showing qualitative differences with respect to muscle nAChRs. In contrast, mutations in the β-strand β6' (at Phe124 and Lys125) showed increased functional responses. Mutations affected equally the responses to acetylcholine and dimethylphenylpiperazinium, except in Phe100 where the latter was sevenfold less effective than in wild-type. Currents in mutants decayed with almost the same kinetics, ruling out large effects on desensitization. Analysis of double mutants demonstrated a functional coupling among the three electrically charged amino acids Asp97, Glu98, and Lys125, and also between Phe100 and Phe124. The results are compatible with the involvement of functional interactions between L5 and β-strand β6' during nAChR activation. 相似文献
12.
Zhenhua Pan Mengwen Zhao Yonglin Peng 《Journal of biomolecular structure & dynamics》2019,37(11):2938-2948
Nicotinic acetylcholine receptors (nAChRs) are pentamers formed by subunits from a large multigene family and are highly variable in kinetic, electrophysiological and pharmacological properties. Due to the essential roles of nAChRs in many physiological procedures and diversity in function, identifying the function-related sites specific to each subunit is not only necessary to understand the properties of the receptors but also useful to design potential therapeutic compounds that target these macromolecules for treating a series of central neuronal disorders. By conducting a detailed function divergence analysis on nine neuronal nAChR subunits from representative vertebrate species, we revealed the existence of significant functional variation between most subunit pairs. Specifically, 44 unique residues were identified for the α7 subunit, while another 22 residues that were likely responsible for the specific features of other subunits were detected. By mapping these sites onto the 3?D structure of the human α7 subunit, a structure-function relationship profile was revealed. Our results suggested that the functional divergence related sites clustered in the ligand binding domain, the β2–β3 linker close to the N-terminal α-helix, the intracellular linkers between transmembrane domains, and the “transition zone” may have experienced altered evolutionary rates. The former two regions may be potential binding sites for the α7* subtype-specific allosteric modulators, while the latter region is likely to be subtype-specific allosteric modulations of the heteropentameric descendants such as the α4β2* nAChRs.
Communicated by Ramaswamy H. Sarma 相似文献
13.
The opening of ligand-gated ion channels in response to agonist binding is a fundamental process in biology. In ATP-gated P2X receptors, little is known about the molecular events that couple ATP binding to channel opening. In this paper, we identify structural changes of the ATP site accompanying the P2X2 receptor activation by engineering extracellular zinc bridges at putative mobile regions as revealed by normal mode analysis. We provide evidence that tightening of the ATP sites shaped like open 'jaws' induces opening of the P2X ion channel. We show that ATP binding favours jaw tightening, whereas binding of a competitive antagonist prevents gating induced by this movement. Our data reveal the inherent dynamic of the binding jaw, and provide new structural insights into the mechanism of P2X receptor activation. 相似文献
14.
Binding of agonists to nicotinic acetylcholine receptors results in channel opening. Previously, we have shown that several charged residues at three different domains of the alpha7 nicotinic receptor are involved in coupling binding and gating, probably through a network of electrostatic interactions. This network, however, could also be integrated by other residues. To test this hypothesis, non-charged amino acids were mutated and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Asn47 and Gln48 (loop 2), Ile130, Trp134, and Gln140 (loop 7), and Thr264 (M2-M3 linker) showed poor or null functional responses, despite significant membrane expression. By contrast, mutants F137A and S265A exhibited a gain of function effect. In all cases, changes in dose-response relationships were small, EC(50) values being between threefold smaller and fivefold larger, arguing against large modifications of agonist binding. Peak currents decayed at the same rate in all receptors except two, excluding large effects on desensitization. Thus, the observed changes could be mostly caused by alterations of the gating characteristics. Moreover, analysis of double mutants showed an interconnection between some residues in these domains, especially Gln48 with Ile130, suggesting a potential coupling between agonist binding and channel gating through these amino acids. 相似文献
15.
Nabil A. Mansour James J. Valdes Adil E. Shamoo Zoltan Annau 《Journal of biochemical and molecular toxicology》1987,2(1):25-42
Purified Torpedo nobiliana electric organ acetylcholine receptor (AChR) was reconstituted into membranes containing natural phospholipids supplemented with cholesterol (25% w/w). The reconstituted system facilitates the study of the effects of drugs on the regulation of the AChR channel complex under both resting and carbachol (carb)-stimulated conditions. Neostigmine (Neo) was the only carbamate to induce activation of [3-H]-phencyclidine ([3-H]-PCP) binding to the channel sites, acting as a weak agonist. The activation of [3-H]-PCP binding is dependent upon the nature of the reconstituted systems, with carb/Neo activation ratios of 8, 3, and 1 for the intact purified AChR vesicles fraction (PVF), the PVF reconstituted in phospholipid/cholesterol (CRPVF), and the PVF reconstituted in phospholipid (RPVF), respectively. The carbamates Neo, physostigmine (Physo), and pyridostigmine (Pyrido) inhibited carb-activated [3-H]-PCP binding with Ki values of 10, 20, and 1,600 μM, respectively. The inhibition was mixed competitivenoncompetitive in nature. The characteristic response of CRPVF to carb-stimulated [22-Na] influx was inhibited by the three carbamates, with IC-50 values of 6,50, and 1,000 μM for Neo, Physo, and Pyrido, respectively. The quaternary ammonium organophosphate ecothiophate (Eco) inhibited carb-stimulated [22-Na] influx with potency similar to that of Neo. Preincubation of AChR preparation with the carbamates and ecothiophate caused a reduction in the binding of [125-I]-α- bungarotoxin ([125-I]-α-BGT) with the following decreasing order of potency: Neo < Physo < Eco < Pyrido. Calcium has a direct modulatory role on the time-course inhibition of [125-I]-α-BGT binding by these drugs. While we observed a high potency of Neo and Physo in inhibiting [125-I]-α-BGT binding, it was undetectable for the carbamate insecticide 2-methyl-2-(methylthio)propionaldehyde-O-(methylcarbamoyl)oxime (aldicarb). These data suggest that the potent anticholinesterase carbamate agents interact differently with the AChR and its ionic channel. Their interactions with the nicotinic AChR channel system can be described as (a) weakly agonist, (b) directly acting on the open conformation of the channel, and (c) blocking the AChR-binding sites. 相似文献
16.
Eric M. Hogan Alison P. Casserly Michael D. Scofield Zhongming Mou Rubing Zhao-Shea Chris W. Johnson Andrew R. Tapper Paul D. Gardner 《RNA (New York, N.Y.)》2014,20(12):1890-1899
Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic
acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR
subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms
regulating these changes remain unclear. A growing body of evidence indicates that microRNAs
(miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening,
site-directed mutagenesis, and gene expression analysis, we have identified a limited number of
miRNAs that functionally interact with the 3′-untranslated regions (3′ UTRs) of
mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily
conserved sites within the 3′ UTRs through which the miRNAs regulate gene expression.
Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition,
the miRNAs that target nAChR 3′ UTRs are expressed in mouse brain and are regulated by
chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p,
is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of
miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit.
Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating
cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation
of the mammalian nAChR gene family. 相似文献
17.
Chou KC 《Biochemical and biophysical research communications》2004,319(2):433-438
Based on the crystal structure of acetylcholine-binding protein, the three-dimensional structures of the extracellular domain, or the ligand-binding domains, of the monomer, homodimer, and homopentamer of the alpha7 nicotinic acetylcholine receptor were derived. The interface between two subunits, where the ligand-binding site is located, was investigated. Furthermore, an explicit definition of the ligand-binding pocket was illustrated that might provide useful clues for conducting various mutagenesis studies for finding drugs against schizophrenia and Alzheimer's disease. 相似文献
18.
Shiori Tamamizu A. Paul Todd Mark G. McNamee 《Cellular and molecular neurobiology》1995,15(4):427-438
Summary 1. Site directed mutagenesis was used to alter the structure ofTorpedo californica nicotinic acetylcholine receptor (nAChR) and to identify amino acid residues which contribute to noncompetitive inhibition by quinacrine. Mutant receptors were expressed inXenopus laevis oocytes injected within vitro synthesized mRNA and the whole cell currents induced by acetylcholine (ACh) were recorded by two electrode voltage clamp.2. A series of mutations of a highly conserved Arg at position 209 of the subunit ofTorpedo californica nAChR revealed that positively charged amino acids are required for functional receptor expression. Mutation of Arg to Lys (R209K) or His (R209H) at position 209 shifted the EC50 for ACh slightly from 5µM to 12µM and increased the normalized maximal channel activity 8.5-and 3.2-fold, respectively.3. These mutations altered the sensitivity of nAChR to noncompetitive inhibition by quinacrine. The extent of inhibition of ion channel function by quinacrine was decreased as pH increased in both wild type and mutant nAChR suggesting that the doubly charged form of quinacrine was responsible for the inhibition.4. Further mutations at different positions of the subunit suggest the contribution of Pro and Tyr residues at positions 211 and 213 to quinacrine inhibition whereas mutationsI210A andL212A did not have any effects. None of these mutations changed the sensitivity of nAChR to inhibition by a different noncompetitive inhibitor, chlorpromazine.5. These findings support a hypothesis that the quinacrine binding site is located in the lumen of the ion channel. In addition, the quantitative effect of point mutations at alternate positions on the sensitivity of quinacrine inhibition suggests that the secondary structure at the beginning of M1 region might be sheet structure. 相似文献
19.
Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal α7 nicotinic acetylcholine receptor 下载免费PDF全文
Todd T Talley Sandrine Conrod William R Kem Palmer Taylor Pascale Marchot Yves Bourne 《The EMBO journal》2009,28(19):3040-3051
The pentameric acetylcholine‐binding protein (AChBP) is a soluble surrogate of the ligand binding domain of nicotinic acetylcholine receptors. Agonists bind within a nest of aromatic side chains contributed by loops C and F on opposing faces of each subunit interface. Crystal structures of Aplysia AChBP bound with the agonist anabaseine, two partial agonists selectively activating the α7 receptor, 3‐(2,4‐dimethoxybenzylidene)‐anabaseine and its 4‐hydroxy metabolite, and an indole‐containing partial agonist, tropisetron, were solved at 2.7–1.75 Å resolution. All structures identify the Trp 147 carbonyl oxygen as the hydrogen bond acceptor for the agonist‐protonated nitrogen. In the partial agonist complexes, the benzylidene and indole substituent positions, dictated by tight interactions with loop F, preclude loop C from adopting the closed conformation seen for full agonists. Fluctuation in loop C position and duality in ligand binding orientations suggest molecular bases for partial agonism at full‐length receptors. This study, while pointing to loop F as a major determinant of receptor subtype selectivity, also identifies a new template region for designing α7‐selective partial agonists to treat cognitive deficits in mental and neurodegenerative disorders. 相似文献
20.
Enrique L.M. Ochoa 《Neurochemistry international》1983,5(3):339-343
The effects of amantadine on liposomally reconstituted nicotinic acetylcholine receptor function were studied. At 1 × 10?4M, the drug blocked 85% of the carbamylcholine-induced cation influx into liposomes, but left 90% of the αbungarotoxin binding intact. In addition, amantadine was shown to be a non-competitive inhibitor of membrane bound acetylcholinesterase. These experiments are relevant to the mechanism of action of amantadine at the motor end plate, where it produces electrophysiological changes compatible with an inhibition of cholinergic agonist mediated ion flux. 相似文献