首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The manipulation of embryonic stem (ES) cells to introduce directional genetic changes into the genome of mice has become an important tool in biomedical research. Monitoring of cell morphology before and after DNA manipulation and special culture conditions are a prerequisite to preserve the pluripotent properties of ES cells and thus their ability to generate chimera and effective germline transmission (GLT). It has been reported that prolonged cell culturing may affect the diploid chromosomal composition of cells and therefore the percentage of chimerism and GLT. Herein, we report multicolor-fluorescence in situ hybridization (M-FISH) analysis of four different ES cell lines/clones. Although the morphology of all four ES cell lines/clones appeared normal and all four expressed the early markers Oct-3/4 and Nanog, two cell lines presented consistent numerical and structural chromosome aberrations. We demonstrate that M-FISH is a sensitive and accurate method for a comprehensive karyotype analysis of ES cells and may minimize time, costs, and disappointment due to inadequate ES cell sources. Both authors contributed equally to this work.  相似文献   

2.
Embryonic stem (ES) cell-based gene manipulation is an effective method for the generation of mutant animal models in mice and rats. Availability of germline-competent ES cell lines from inbred rat strains would allow for creation of new genetically modified models in the desired genetic background. Fischer344 (F344) males carrying an enhanced green fluorescence protein (EGFP) transgene were used as the founder animals for the derivation of ES cell lines. After establishment of ES cell lines, rigorous quality control testing that included assessment of pluripotency factor expression, karyotype analysis, and pathogen/sterility testing was conducted in selected ES cell lines. One male ES cell line, F344-Tg.EC4011, was further evaluated for germline competence by injection into Dark Agouti (DA) X Sprague Dawley (SD) blastocysts. Resulting chimeric animals were bred with wild-type SD mates and germline transmissibility of the ES cell line was confirmed by identification of pups carrying the ES cell line-derived EGFP transgene. This is the first report of a germline competent F344 ES cell line. The availability of a new germline competent ES cell line with a stable fluorescence reporter from an inbred transgenic rat strain provides an important new resource for genetic manipulations to create new rat models.  相似文献   

3.
Pluripotent stem cells, termed embryonic germ (EG) cells, have been generated from both human and mouse primordial germ cells (PGCs). Like embryonic stem (ES) cells, EG cells have the potential to differentiate into all germ layer derivatives and may also be important for any future clinical applications. The development of PGCs in vivo is accompanied by major epigenetic changes including DNA demethylation and imprint erasure. We have investigated the DNA methylation pattern of several imprinted genes and repetitive elements in mouse EG cell lines before and after differentiation. Analysed cell lines were derived soon after PGC specification, “early”, in comparison with EG cells derived after PGC colonisation of the genital ridge, “late” and embryonic stem (ES) cell lines, derived from the inner cell mass (ICM). Early EG cell lines showed strikingly heterogeneous DNA methylation patterns, in contrast to the uniformity of methylation pattern seen in somatic cells (control), late EG cell and ES cell lines. We also observed that all analysed XX cell lines exhibited less methylation than XY. We suggest that this heterogeneity may reflect the changes in DNA methylation taking place in the germ cell lineage soon after specification.  相似文献   

4.
5.
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.  相似文献   

6.
The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants, determined from the SNP arrays, also appeared sporadically. No common variants related to culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome 20q11.21, including three genes expressed in human ES cells, ID1, BCL2L1 and HM13, occurred in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells.  相似文献   

7.
常规基因剔除小鼠的获得主要是利用ES细胞的全能性先获得嵌合体小鼠,再利用:ES细胞的生殖系传递能力,通过嵌合体与野生型小鼠的交配获得杂合子小鼠.而四倍体补偿技术则可绕过嵌合体小鼠阶段,直接获得基因修饰杂合子小鼠.利用电融合技术和Piezoelectric microinjecfion显微注射技术建立了四倍体补偿技术,小鼠四倍体胚胎的获得率(电融合率)为(93.01±l.37)%,经体外培养囊胚形成率为(82.49±2.08)%.通过显微注射方法将2种129品系小鼠来源的ES细胞(CJ7和SCR012)注射到四倍体囊胚腔中,获得了完全ES细胞来源的小鼠,ES鼠的获得率分别为2.7%和8.3%.经微卫星DNA检测,成体小鼠的10个被检测组织均为129小鼠来源的.同时,也利用基因修饰的ES细胞进行了研究,获得了2种基因修饰的完全ES细胞来源的杂合子小鼠,部分小鼠具有繁殖能力,经繁育已获得了纯合子,其中凝血因子Ⅷ基因敲除小鼠获得了预期的血友病小鼠表型.上述结果说明四倍体补偿技术可应用于基因修饰小鼠的制备.  相似文献   

8.
9.
We describe the ability of novel episomally maintained vectors to efficiently promote gene expression in embryonic stem (ES) cells as well as in established mouse cell lines. Extrachromosomal maintenance of our vectors is based on the presence of polyoma virus DNA sequences, including the origin of replication harboring a mutant enhancer (PyF101), and a modified version of the polyoma early region (LT20) encoding the large T antigen only. Reporter gene expression from such extrachromosomally replicating vectors was approximately 10-fold higher than expression from replication-incompetent control plasmids. After transfection of different ES cell lines, the polyoma virus-derived plasmid variant pMGD20neo (7.2 kb) was maintained episomally in 16% of the G418-resistant clones. No chromosomal integration of pMGD20neo vector DNA was detected in ES cells that contained episomal vector DNA even after long term passage. The vector's replication ability was not altered after insertion of up to 10 kb hprt gene fragments. Besides undifferentiated ES cells, the polyoma-based vectors were also maintained extrachromosomally in differentiating ES cells and embryoid bodies as well as in established mouse cell lines.  相似文献   

10.
11.
12.
Recently, mice and embryonic stem (ES) cells with allelic polymorphisms have been used extensively in the field of genetics and developmental biology. In this study, we examined whether intersubspecific hybrid mice and ES cells with these genotypes can be efficiently produced by intracytoplasmic sperm injection (ICSI). Frozen-thawed spermatozoa from wild-derived strains, JF1 (Mus musculus molossinus), MSM (M. m. molossinus), HMI (M. m. castaneus), and SWN (M. m. spp.), were directly injected into mature oocytes from laboratory mice ([C57BL/6 x DBA2]F1; M. m. domesticus). The in vitro and in vivo developmental capacity of F1 embryos was not significantly different among the groups (P > 0.05), and term offspring were efficiently obtained in all groups (27%-34% of transferred embryos). However, the mean body and placental weights of the offspring differed significantly with genotype (P < 5 x 10(-10)), with the HMI hybrid greatest in both body and placental weights. In an application study using these F1 offspring, we analyzed their mitochondrial DNA using intersubspecific polymorphisms and found the consistent disappearance of sperm mitochondrial DNA in the F1 progeny. In a second series of experiments, we generated F1 blastocysts by injecting MSM spermatozoa into C57BL/6 oocytes and used them to generate hybrid ES cell lines. The ES cell lines were established at a high efficiency (9 lines from 20 blastocysts) and their allelic polymorphisms were confirmed. Thus, ICSI using cryopreserved spermatozoa allows the efficient and immediate production of a number of F1 hybrid mice and ES cell lines, which can be used for polymorphic analysis of mouse genetics.  相似文献   

13.
14.
Human embryonic stem (ES) cells are pluripotent cell lines that have been derived from the inner cell mass (ICM) of blastocyst stage embryos [1--3]. They are characterized by their ability to be propagated indefinitely in culture as undifferentiated cells with a normal karyotype and can be induced to differentiate in vitro into various cell types [1, 2, 4-- 6]. Thus, human ES cells promise to serve as an unlimited cell source for transplantation. However, these unique cell lines tend to spontaneously differentiate in culture and therefore are difficult to maintain. Furthermore, colonies may contain several cell types and may be composed of cells other than pluripotent cells [1, 2, 6]. In order to overcome these difficulties and establish lines of cells with an undifferentiated phenotype, we have introduced a reporter gene that is regulated by a promoter of an ES cell-enriched gene into the cells. For the introduction of DNA into human ES cells, we have established a specific transfection protocol that is different from the one used for murine ES cells. Human ES cells were transfected with enhanced green fluorescence protein (EGFP), under the control of murine Rex1 promoter. The transfected cells show high levels of GFP expression when in an undifferentiated state. As the cells differentiate, this expression is dramatically reduced in monolayer cultures as well as in the primitive endoderm of early stage (simple) embryoid bodies (EBs) and in mature EBs. The undifferentiated cells expressing GFP can be analyzed and sorted by using a Fluorescence Activated Cell Sorter (FACS). Thus, we have established lines of human ES cells in which only undifferentiated cells are fluorescent, and these cells can be followed and selected for in culture. We also propose that the pluripotent nature of the culture is made evident by the ability of the homogeneous cell population to form EBs. The ability to efficiently transfect human ES cells will provide the means to study and manipulate these cells for the purpose of basic and applied research.  相似文献   

15.
We performed chromosomal analysis on 540 mouse embryonic stem (ES) cell lines obtained during 2001 to 2004 from 20 institutions in Japan. Overall, 66.5% of the ES cell lines showed normal chromosomal numbers, but 15.9%, 9.1%, and 2.8% showed modal chromosomal numbers of 41, 42, and 39, respectively. When we karyotyped 88 ES cell lines selected arbitrarily from the 540 lines, 53 (60.2%) showed normal diploid karyotypes; the sex chromosome constitution of 52 lines was XY, with the remaining 1 being XX. Among 35 ES cell lines showing abnormal karyotypes, trisomy of chromosome 8 (41, XY, +8) was dominant (51.4%), 14.3% had trisomy 8 with loss of one sex chromosome (40, XO, +8), and 11.4% had trisomy 8 together with trisomy 11 (42, XY, +8, +11). Karyotypic abnormalities including trisomy 8 and trisomy 11 occurred in 88.6% and 17.1% of ES cell lines, respectively. The XO sex chromosome constitution was observed in 25.7% of all abnormal ES cell lines. Of the 88 selected ES cell lines, 60 lines were established from strain 129 animals, 17 from F1 progeny of C57BL/6J x CBA (called TT2 in this study), and 11 from C57BL/6J mice. Normal diploid karyotypes were observed in 58.3% of lines derived from 129, 58.8% of those from TT2, and 72.7% of C57BL/6J. The relatively high incidence of abnormalities in chromosomal number and karyotype in ES cell lines used in Japan suggests the importance of chromosomal analysis of ES cells for successful establishment of new animal models through germline transmission.  相似文献   

16.
17.
Oocytes can reprogram genomes to form embryonic stem (ES) cells. Although ES cells largely escape senescence, oocytes themselves do senesce in the ovaries of most mammals. It remains to be determined whether ES cells can be established using eggs from old females, which exhibit reproductive senescence. We attempted to produce pluripotent stem cell lines from artificial activation of eggs (also called pES) from reproductive aged mice, to determine whether maternal aging affects pES cell production and pluripotency. We show that pES cell lines were generated with high efficiency from reproductive aged (old) mice, although parthenogenetic embryos from these mice produced fewer ES clones by initial two passages. Further, pES cell lines generated from old mice showed telomere length, expression of pluripotency molecular markers (Oct4, Nanog, SSEA1), alkaline phosphatase activity, teratoma formation and chimera production similar to young mice. Notably, DNA damage was reduced in pES cells from old mice compared to their progenitor parthenogenetic blastocysts, and did not differ from that of pES cells from young mice. Also, global gene expression differed only minimally between pES cells from young and old mice, in contrast to marked differences in gene expression in eggs from young and old mice. These data demonstrate that eggs from old mice can generate pluripotent stem cells, and suggest that the isolation and in vitro culture of ES cells must select cells with high levels of DNA and telomere integrity, and/or with capacity to repair DNA and telomeres.  相似文献   

18.
The majority of gene-targeting experiments in mice are performed in 129Sv-derived embryonic stem (ES) cell lines, which are generally considered to be more reliable at colonizing the germ line than ES cells derived from other strains. Gene targeting is reliant on homologous recombination of a targeting vector with the host ES cell genome. The efficiency of recombination is affected by many factors, including the isogenicity (H. te Riele et al., 1992, Proc. Natl. Acad. Sci. USA 89, 5128-5132) and the length of homologous sequence of the targeting vector and the location of the target locus. Here we describe the double-end sequencing and mapping of 84,507 bacterial artificial chromosomes (BACs) generated from AB2.2 ES cell DNA (129S7/SvEvBrd-Hprtb-m2). We have aligned these BACs against the mouse genome and displayed them on the Ensembl genome browser, DAS: 129S7/AB2.2. This library has an average insert size of 110.68 kb and average depth of genome coverage of 3.63- and 1.24-fold across the autosomes and sex chromosomes, respectively. Over 97% of the mouse genome and 99.1% of Ensembl genes are covered by clones from this library. This publicly available BAC resource can be used for the rapid construction of targeting vectors via recombineering. Furthermore, we show that targeting vectors containing DNA recombineered from this BAC library can be used to target genes efficiently in several 129-derived ES cell lines.  相似文献   

19.
The BayGenomics gene-trap resource (http://baygenomics.ucsf.edu) provides researchers with access to thousands of mouse embryonic stem (ES) cell lines harboring characterized insertional mutations in both known and novel genes. Each cell line contains an insertional mutation in a specific gene. The identity of the gene that has been interrupted can be determined from a DNA sequence tag. Approximately 75% of our cell lines contain insertional mutations in known mouse genes or genes that share strong sequence similarities with genes that have been identified in other organisms. These cell lines readily transmit the mutation to the germline of mice and many mutant lines of mice have already been generated from this resource. BayGenomics provides facile access to our entire database, including sequence tags for each mutant ES cell line, through the World Wide Web. Investigators can browse our resource, search for specific entries, download any portion of our database and BLAST sequences of interest against our entire set of cell line sequence tags. They can then obtain the mutant ES cell line for the purpose of generating knockout mice.  相似文献   

20.
A genetic screen of transgenic mouse strains, carrying multiple copies of an MPSV neo retroviral vector, has led to the identification of a recessive embryonic lethal mutation, termed 413.d. This mutation is associated with a single proviral insertion and when homozygous, results in the failure of the early postimplantation embryo at the gastrulation stage of development. Embryonic stem cell lines (ES cells) were derived from 413.d intercross embryos. Genotyping, with respect to the 413.d integration site, identified wild-type, heterozygous and homozygous ES cell lines. The differentiation abilities and developmental potential of the ES cell lines were assessed using a number of in vitro and in vivo assays. Results indicate that the ES cell lines, regardless of genotype, are pluripotent and can give rise to tissue and cell types derived from all three germ layers. Furthermore, analysis of midgestation conceptuses (10.5 p.c.) and adult chimeras generated by injecting mutant ES cells into host blastocysts, provides strong evidence that the mutant cells can contribute to all extraembryonic tissues and somatic tissues, as well as to functional germ cells. These results indicate that the homozygous mutant cells can be effectively 'rescued' by the presence of wild-type cells in a carrier embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号