首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
2.
Adaptive mutations are mutations that occur in nondividing or very slowly dividing microbial cells during prolonged nonlethal selection and that are specific to the challenge of the selection in the sense that the only mutations that can be detected are those that provide a growth advantage to the cell. The phoPQ genes encode a two-component positively acting regulatory system that controls expression of at least 25 to 30 genes in Escherichia coli and Salmonella typhimurium. PhoPQ responds to a variety of environmental stress signals including Mg2+ starvation and nutritional deprivation. Here I show that disruption of phoP or phoQ by Tn10dCam significantly reduces the adaptive mutation rate to ebgR, indicating that the adaptive mutagenesis machinery is regulated, directly or indirectly, by phoPQ. The finding that it is regulated implies that adaptive mutagenesis does not simply result from a failure of various error correction mechanisms during prolonged starvation.  相似文献   

3.
4.
Bacteria live in unstructured and structured environments, experiencing feast and famine lifestyles. Bacterial colonies can be viewed as model structured environments. SOS induction and mutagenesis have been observed in aging Escherichia coli colonies, in the absence of exogenous sources of DNA damage. This cAMP-dependent mutagenesis occurring in Resting Organisms in a Structured Environment (ROSE) is unaffected by a umuC mutation and therefore differs from both targeted UV mutagenesis and recA730 (SOS constitutive) untargeted mutagenesis. As a recB mutation has only a minor effect on ROSE mutagenesis it also differs from both adaptive reversion of the lacI33 allele and from iSDR (inducible Stable DNA Replication) mutagenesis. Besides its recA and lexA dependence, ROSE mutagenesis is also uvrB and polA dependent. These genetic requirements are reminiscent of the untargeted mutagenesis in λ phage observed when unirradiated λ infects UV-irradiated E. coli. These mutations, which are not observed in aging liquid cultures, accumulate linearly with the age of the colonies. ROSE mutagenesis might offer a good model for bacterial mutagenesis in structured environments such as biofilms and for mutagenesis of quiescent eukaryotic cells. Received: 30 April 1997 / Accepted: 1 July 1997  相似文献   

5.
ABSTRACT

Adaptive mutation is a generic term for processes that allow individual cells of nonproliferating cell populations to acquire advantageous mutations and thereby to overcome the strong selective pressure of proliferation-limiting environmental conditions. Prerequisites for an occurrence of adaptive mutation are that the selective conditions are nonlethal and that a restart of proliferation may be accomplished by some genetic change in principle. The importance of adaptive mutation is derived from the assumption that it may, on the one hand, result in an accelerated evolution of microorganisms and, on the other, in multicellular organisms may contribute to a breakout of somatic cells from negative growth regulation, i.e., to cancerogenesis. Most information on adaptive mutation in eukaryotes has been gained with the budding yeast Saccharomyces cerevisiae. This review focuses comprehensively on adaptive mutation in this organism and summarizes our current understanding of this issue.  相似文献   

6.
Guanyl-specific ribonucleases from Bacillus intermedius and Bacillus pumilus are actively secreted under phosphate starvation by recombinant strains of Bacillus subtilis with native regulatory systems and by strains defective in some proteins of the Spo0A phosphorylation pathway. The level of expression of ribonuclease genes has been shown to increase approximately sixfold in recombinant strains with mutation in the spo0A gene and threefold in the spo0A/abrB mutants, as compared with native strains. These results demonstrate that the Spo0A protein regulates the production of ribonucleases and thus acts as a repressor, while the AbrB protein is an activator of expression of the genes encoding ribonucleases from Bacillus intermedius and Bacillus pumilus in Bacillus subtilis cells. Original Russian Text ? V.V. Ul’yanova, V.I. Vershinina, M.A. Kharitonova, M.R. Sharipova, 2007, published in Mikrobiologiya, 2007, Vol. 76, No. 5, pp. 639–644.  相似文献   

7.
Summary We have isolated, after ethylmethanesulfonate mutagenesis, several chromosomal mutations causing resistance to tetracycline in Bacillus subtilis. These mutations fall into two classes, tetA and tetB. 30 S ribosomal protein S10 shows an altered mobility on two-dimensional acrylamide gels in cells bearing the former type of mutation. Ribosomes from these cells show elevated levels of resistance to tetracycline in vitro as measured by polyuridine dependent polyphenylalanine synthesis. The tetA locus maps adjacent to the tuf gene in the B. subtilis ribosomal protein gene cluster. Cells with the tetB mutation do not show any altered ribosomal protein, and their ribosomes are as sensitive, in vitro, to tetracycline as ribosomes isolated from wild type cells. The tetB mutation has been mapped proximal to cysA14.In partial fulfillment of the requirements for the doctoral degree by G.W. in the Department of Biology at the New York University Graduate School of Arts and Sciences  相似文献   

8.
A recN (recN1) strain of Bacillus subtilis was constructed. The effects of this and recF, recH and addAB mutations on recombination proficiency were tested. Mutations in the recN, recF recH and addAB genes, when present in an otherwise Rec+ B. subtilis strain, did not affect genetic exchange. Strains carrying different combinations of mutations in these genes were constructed and examined for their sensitivity to 4-nitroquinoline1-oxide (4NQO) and recombination proficiency. The recH mutation did not affect the 4NQO sensitivity of recN and recF cells and it only marginally affected that of addA addB cells. However, it reduced genetic recombination in these cells 102- to 104-fold. The addA addB mutations increased the 4NQO sensitivity of recF and recN cells, but completely blocked genetic recombination of recF cells and marginally affected recombination in recN cells. The recN mutation did not affect the recombinational capacity of recF cells. These data indicate that the recN gene product is required for, DNA repair and recombination and that the recF, recH and addAB genes provide overlapping activities that compensate for the effects of single mutants proficiency. We proposed that the recF, recH, recB and addA gene products define four different epistatic groups.  相似文献   

9.
10.
To ensure proper transmission of genetic information, cells need to preserve and faithfully replicate their genome, and failure to do so leads to genome instability, a hallmark of both cancer and aging. Defects in genes involved in guarding genome stability cause several human progeroid syndromes, and an age‐dependent accumulation of mutations has been observed in different organisms, from yeast to mammals. However, it is unclear whether the spontaneous mutation rate changes during aging and whether specific pathways are important for genome maintenance in old cells. We developed a high‐throughput replica‐pinning approach to screen for genes important to suppress the accumulation of spontaneous mutations during yeast replicative aging. We found 13 known mutation suppression genes, and 31 genes that had no previous link to spontaneous mutagenesis, and all acted independently of age. Importantly, we identified PEX19, encoding an evolutionarily conserved peroxisome biogenesis factor, as an age‐specific mutation suppression gene. While wild‐type and pex19Δ young cells have similar spontaneous mutation rates, aged cells lacking PEX19 display an elevated mutation rate. This finding suggests that functional peroxisomes may be important to preserve genome integrity specifically in old cells.  相似文献   

11.
In eukaryotes, damage tolerance of matrix DNA is mainly determined by the repair pathway under the control of the RAD6 epistatic group of genes. This pathway is also a main source of mutations generated by mutagenic factors. The results of our recent studies show that gene HSM3 participating in the control of adaptive mutagenesis increases the frequency of mutations induced by different mutagens. Mutations rad18, rev3, and mms2 controlling various stages of the RAD6 pathway are epistatic with mutation hsm3 that decreases UV-induced mutagenesis to the level typical for single radiation-sensitive mutants. The level of mutagenesis in the double mutant srs2 hsm3 was lower than in both single mutants. Note that a decrease in the level of mutagenesis relative to the single mutant srs2 depends on the mismatch repair, since this level in the triple mutant srs2 hsm3 pms1 corresponds to that in the single mutant srs2. These data show that the mutator phenotype hsm3 is probably determined by processes occurring in a D loop. In a number of current works, the protein Hsm3 was shown to participate in the assembly of the proteasome complex S26. The assembly of proteasomes is governed by the N-terminal domain. Our results demonstrated that the Hsm3 protein contains at least two domains; the N-terminal part of the domain is responsible for the proteasome assembly, whereas the C-terminal portion of the protein is responsible for mutagenesis.  相似文献   

12.
Growing attention is paid to the concept that mutations arising in stationary, non-proliferating cell populations considerably contribute to evolution, aging, and pathogenesis. If such mutations are beneficial to the affected cell, in the sense of allowing a restart of proliferation, they are called adaptive mutations. In order to identify cellular processes responsible for adaptive mutagenesis in eukaryotes, we study frameshift mutations occurring during auxotrophy-caused cell cycle arrest in the model organism Saccharomyces cerevisiae. Previous work has shown that an exposure of cells to UV irradiation during prolonged cell cycle arrest resulted in an increased incidence of mutations. In the present work, we determined the influence of defects in the nucleotide excision repair (NER) pathway on the incidence of UV-induced adaptive mutations in stationary cells. The mutation frequency was decreased in Rad16-deficient cells and further decreased in Rad16/Rad26 double-deficient cells. A knockout of the RAD14 gene, the ortholog of the human XPA gene, even resulted in a nearly complete abolishment of UV-induced mutagenesis in cell cycle-arrested cells. Thus, the NER pathway, responsible for a normally accurate repair of UV-induced DNA damage, paradoxically is required for the generation and/or fixation of UV-induced frameshift mutations specifically in non-replicating cells.  相似文献   

13.
Bacteria live in unstructured and structured environments, experiencing feast and famine lifestyles. Bacterial colonies can be viewed as model structured environments. SOS induction and mutagenesis have been observed in aging Escherichia coli colonies, in the absence of exogenous sources of DNA damage. This cAMP-dependent mutagenesis occurring in Resting Organisms in a Structured Environment (ROSE) is unaffected by a umuC mutation and therefore differs from both targeted UV mutagenesis and recA730 (SOS constitutive) untargeted mutagenesis. As a recB mutation has only a minor effect on ROSE mutagenesis it also differs from both adaptive reversion of the lacI33 allele and from iSDR (inducible Stable DNA Replication) mutagenesis. Besides its recA and lexA dependence, ROSE mutagenesis is also uvrB and polA dependent. These genetic requirements are reminiscent of the untargeted mutagenesis in λ phage observed when unirradiated λ infects UV-irradiated E. coli. These mutations, which are not observed in aging liquid cultures, accumulate linearly with the age of the colonies. ROSE mutagenesis might offer a good model for bacterial mutagenesis in structured environments such as biofilms and for mutagenesis of quiescent eukaryotic cells.  相似文献   

14.
In growing Escherichia coli K12 cells, the cryptic bgl operon is activated 98% of the time by insertions of IS1 or IS5 into the control region, designated bglR. The activated bgl operon permits utilization of the beta-glucoside sugar arbutin as a sole carbon and energy source. The bgl operon is also activated by late-occurring mutations during prolonged selection on arbutin. The late-occurring mutations that occurred during prolonged carbon starvation in the presence of arbutin were "adaptive mutations" because they were specific to the presence of arbutin, and they did not occur during prolonged starvation in the absence of arbutin. The spectrum of late-arising mutations differed from that of early-arising, growth-dependent mutations in that 20% of the late-arising mutants resulted from mutations at the hns locus. This provides the first direct evidence for adaptive mutagenesis mediated by the insertion of IS elements. Because no special genetic background is required to select Bgl+ mutants, this affords the opportunity to study IS-element-mediated adaptive mutagenesis in a variety of genetic backgrounds, including the backgrounds of natural isolates of E. coli.   相似文献   

15.
It is shown that partial phenotypic suppression of two ochre mutations (argE3 andlacZU118) and an amber mutation (inargE) by sublethal concentrations of streptomycin in anrpsL + (streptomycin-sensitive) derivative of theEscherichia coli strain AB1157 greatly enhances their adaptive mutability under selection. Streptomycin also increases adaptive mutability brought about by theppm mutation described earlier. Inactivation ofrecA affects neither phenotypic suppression by streptomycin nor replication-associated mutagenesis but abolishes adaptive mutagenesis. These results indicate a causal relationship between allele leakiness and adaptive mutability.  相似文献   

16.
Selection-induced mutations, sometimes called directed, adaptive, or Cairnsian mutations, are spontaneous mutations that occur as specific responses to environmental challenges, usually during periods of prolonged stress, and that occur more often when they are selectively advantageous than when they are selectively neutral. In this study I show that lesions in uvrA, uvrB, uvrC, or uvrD increase the mutation rate from trpA46 to trpA + by 102– to 104–fold during tryptophan starvation, but those same lesions do not affect random mutation rates in growing cells when tryptophan is present. The increased selection-induced mutation rates remain specific to the gene that is under selection in that no increase in the mutation rate from trpA46 to trpA + is detected during proline starvation.Evidence is presented showing that proline starvation produces a state of cellular stress which results in a burst of mutations from trpA46 to trpA + when proline-starved cells are plated onto medium lacking tryptophan but containing proline.These results are consistent with the hypermutable state model for selection-induced mutagenesis.  相似文献   

17.
Summary A newly-isolated Escherichia coli mutant suffers only about 10% as many mutations as normal strains on exposure to nitrosoguanidine1. The responsible mutation, inm-1, maps at approximately minute 79 in the current E. coli genetic map. The mutant is normal for overall growth, nitrosoguanidine lethality, spontaneous mutagenesis, ultraviolet light lethality and mutagenesis, ethyl methanesulfonate lethality and mutagenesis, and the adaptive repair induced by alkylating agents. The existence of this mutation proves that nitrosoguanidine mutagenesis is not merely the result of reactions between the chemical and DNA, but requires specific cellular function(s), and underscores the peculiarity of nitrosoguanidine as a mutagen.  相似文献   

18.
Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.  相似文献   

19.
Soil bacteria like Bacillus subtilis can cope with many growth conditions by adjusting gene expression and metabolic pathways. Alternatively, bacteria can spontaneously accumulate beneficial mutations or shape their genomes in response to stress. Recently, it has been observed that a B. subtilis mutant lacking the catabolically active glutamate dehydrogenase (GDH), RocG, mutates the cryptic gudBCR gene at a high frequency. The suppressor mutants express the active GDH GudB, which can fully replace the function of RocG. Interestingly, the cryptic gudBCR allele is stably inherited as long as the bacteria synthesize the functional GDH RocG. Competition experiments revealed that the presence of the cryptic gudBCR allele provides the bacteria with a selective growth advantage when glutamate is scarce. Moreover, the lack of exogenous glutamate is the driving force for the selection of mutants that have inactivated the active gudB gene. In contrast, two functional GDHs are beneficial for the cells when glutamate was available. Thus, the amount of GDH activity strongly affects fitness of the bacteria depending on the availability of exogenous glutamate. At a first glance the high mutation frequency of the cryptic gudBCR allele might be attributed to stress-induced adaptive mutagenesis. However, other loci on the chromosome that could be potentially mutated during growth under the selective pressure that is exerted on a GDH-deficient mutant remained unaffected. Moreover, we show that a GDH-proficient B. subtilis strain has a strong selective growth advantage in a glutamate-dependent manner. Thus, the emergence and rapid clonal expansion of the active gudB allele can be in fact explained by spontaneous mutation and growth under selection without an increase of the mutation rate. Moreover, this study shows that the selective pressure that is exerted on a maladapted bacterium strongly affects the apparent mutation frequency of mutational hot spots.  相似文献   

20.
Summary Four temperature sensitive mutants of B. subtilis were isolated by localized mutagenesis in the major ribosomal gene cluster, and characterized genetically and biochemically. Three are mutations which cause temperature sensitivity in the elongation factor Ef-G, and one which has a similar effect on the elongation factor Ef-Tu. They map in a cluster near strA, with the temperature-sensitive mutations in Ef-G mapping between the strA gene and the temperature sensitive mutation in Ef-Tu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号