首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbic acid in plants: biosynthesis and function   总被引:10,自引:0,他引:10  
Ascorbic acid (vitamin C) is an abundant component of plants. It reaches a concentration of over 20 mM in chloroplasts and occurs in all cell compartments, including the cell wall. It has proposed functions in photosynthesis as an enzyme cofactor (including synthesis of ethylene, gibberellins and anthocyanins) and in control of cell growth. A biosynthetic pathway via GDP-mannose, GDP-L-galactose, L-galactose, and L-galactono-1,4-lactone has been proposed only recently and is supported by molecular genetic evidence from the ascorbate-deficient vtc 1 mutant of Arabidopsis thaliana. Other pathways via uronic acids could provide minor sources of ascorbate. Ascorbate, at least in some species, is a precursor of tartrate and oxalate. It has a major role in photosynthesis, acting in the Mehler peroxidase reaction with ascorbate peroxidase to regulate the redox state of photosynthetic electron carriers and as a cofactor for violaxanthin de-epoxidase, an enzyme involved in xanthophyll cycle-mediated photoprotection. The hypersensitivity of some of the vtc mutants to ozone and UV-B radiation, the rapid response of ascorbate peroxidase expression to (photo)-oxidative stress, and the properties of transgenic plants with altered ascorbate peroxidase activity all support an important antioxidative role for ascorbate. In relation to cell growth, ascorbate is a cofactor for prolyl hydroxylase that posttranslationally hydroxylates proline residues in cell wall hydroxyproline-rich glycoproteins required for cell division and expansion. Additionally, high ascorbate oxidase activity in the cell wall is correlated with areas of rapid cell expansion. It remains to be determined if this is a causal relationship and, if so, what is the mechanism. Identification of the biosynthetic pathway now opens the way to manipulating ascorbate biosynthesis in plants, and, along with the vtc mutants, this should contribute to a deeper understanding of the proposed functions of this multifaceted molecule.  相似文献   

2.
3.
BOTANICAL BRIEFING: The Function and Metabolism of Ascorbic Acid in Plants   总被引:2,自引:0,他引:2  
Ascorbate is a major metabolite in plants. It is an antioxidantand, in association with other components of the antioxidantsystem, protects plants against oxidative damage resulting fromaerobic metabolism, photosynthesis and a range of pollutants.Recent approaches, using mutants and transgenic plants, areproviding evidence for a key role for the ascorbate–glutathionecycle in protecting plants against oxidative stress. Ascorbateis also a cofactor for some hydroxylase enzymes (e.g. prolylhydroxylase) and violaxanthin de-epoxidase. The latter enzymelinks ascorbate to the photoprotective xanthophyll cycle. Arole in regulating photosynthetic electron transport has beenproposed. The biosynthetic pathway of ascorbate in plants hasnot been identified and evidence for the proposed pathways isreviewed. Ascorbate occurs in the cell wall where it is a firstline of defence against ozone. Cell wall ascorbate and cellwall-localized ascorbate oxidase (AO) have been implicated incontrol of growth. High AO activity is associated with rapidlyexpanding cells and a model which links wall ascorbate and ascorbateoxidase to cell wall extensibility is presented. Ascorbate hasalso been implicated in regulation of cell division by influencingprogression from G1 to S phase of the cell cycle. There is aneed to increase our understanding of this enigmatic moleculesince it could be involved in a wide range of important functionsfrom antioxidant defence and photosynthesis to growth regulation. Ascorbic acid; ascorbate oxidase; cell division; cell wall; growth; oxidative stress; photosynthesis; ozone; vitamin C  相似文献   

4.
Ascorbate biosynthesis and function in photoprotection   总被引:23,自引:0,他引:23  
Ascorbate (vitamin C) can reach very high concentrations in chloroplasts (20-300 mM). The pool size in leaves and chloroplasts increases during acclimation to high light intensity and the highest concentrations recorded are in high alpine plants. Multiple functions for ascorbate in photosynthesis have been proposed, including scavenging of active oxygen species generated by oxygen photoreduction and photorespiration, regeneration of alpha-tocopherol from alpha-tocopheryl radicals, cofactor for violaxanthin de-epoxidase and donation of electrons to photosystem II. Hydrogen peroxide scavenging is catalysed by ascorbate peroxidase (Mehler peroxidase reaction) and the subsequent regeneration of ascorbate by reductant derived from photosystem I allows electron flow in addition to that used for CO2 assimilation. Ascorbate is synthesized from guanosine diphosphate-mannose via L-galactose and L-galactono-1,4-lactone. The last step, catalysed by L-galactono-1,4-lactone dehydrogenase, is located on the inner mitochondrial membrane and uses cytochrome c as electron acceptor. L-galactono-1,4-lactone oxidation to ascorbate by intact leaves is faster in high-light acclimated leaves and is also enhanced by high light, suggesting that this step contributes to the control of pool size by light. Ascorbate-deficient Arabidopsis thaliana vtc mutants are hypersensitive to a number of oxidative stresses including ozone and ultraviolet B radiation. Further investigation of these mutants shows that they have reduced zeaxanthin-dependent non-photochemical quenching, confirming that ascorbate is the cofactor for violaxanthin de-epoxidase and that availability of thylakoid lumen ascorbate could limit this reaction. The vtc mutants are also more sensitive to photo-oxidation imposed by combined high light and salt treatments.  相似文献   

5.
Identification of ascorbic acid-deficient Arabidopsis thaliana mutants   总被引:9,自引:0,他引:9  
Conklin PL  Saracco SA  Norris SR  Last RL 《Genetics》2000,154(2):847-856
Vitamin C (l-ascorbic acid) is a potent antioxidant and cellular reductant present at millimolar concentrations in plants. This small molecule has roles in the reduction of prosthetic metal ions, cell wall expansion, cell division, and in the detoxification of reactive oxygen generated by photosynthesis and adverse environmental conditions. However, unlike in animals, the biosynthesis of ascorbic acid (AsA) in plants is only beginning to be unraveled. The previously described AsA-deficient Arabidopsis mutant vtc1 (vitamin c-1) was recently shown to have a defect in GDP-mannose pyrophosphorylase, providing strong evidence for the recently proposed role of GDP-mannose in AsA biosynthesis. To genetically define other AsA biosynthetic loci, we have used a novel AsA assay to isolate four vtc mutants that define three additional VTC loci. We have also isolated a second mutant allele of VTC1. The four loci represented by the vtc mutant collection have been genetically characterized and mapped onto the Arabidopsis genome. The vtc mutants have differing ozone sensitivities. In addition, two of the mutants, vtc2-1 and vtc2-2, have unusually low levels of AsA in the leaf tissue of mature plants.  相似文献   

6.
Drought stress has a negative impact on plant cells and results in the generation of reactive oxygen species (ROS). To increase our understanding of the effects of drought stress on antioxidant processes, we investigated the response of the ascorbate-deficient Arabidopsis thaliana vtc1 mutant to drought stress. After drought stress, vtc1 mutants exhibited increases in several oxidative parameters, including H2O2 content and the production of thiobarbituric acid reactive substances. Decreases in chlorophyll content and chlorophyll fluorescence parameters were also observed. The vtc1 mutants had higher total glutathione than did wild-type (WT) plants after 48 h of drought stress. A reduced ratio of glutathione/total glutathione and an increased ratio of dehydroascorbate/total ascorbate were observed in the vtc1 mutants compared with the WT plants. In addition, the activities of enzymes that are responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, were decreased in the vtc1 mutants compared with the WT plants. Similar reductions in activity in the vtc1 mutant were observed for the enzymes that are responsible for the regeneration of ascorbate and glutathione, including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. These results suggest that low intrinsic ascorbate and impaired ascorbate–glutathione cycling in the vtc1 mutant induced a decrease in the reduced form of ascorbate, which enhanced sensitivity to drought stress.  相似文献   

7.
Low temperature has a negative impact on plant cells and results in the generation of reactive oxygen species (ROS). In order to study the role of ascorbate under chilling stress, the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc2-1 to low temperature (2°C) was investigated. After chilling stress, vtc2-1 mutants exhibited oxidative damage. An increase in the H2O2 generation and the production of thiobarbituric acid reactive substances (TBARS), and a decrease in chlorophyll content, the maximal photochemical efficiency of PSII (Fv/Fm) and oxidizable P700 were also noted. The ratio of ascorbate/dehydroascorbate and reduced glutathione/oxidzed glutathione in the vtc2-1 mutants were reduced, compared with the wild type (WT) plants. The activities of antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX), and soluble antioxidants were lower in the vtc2-1 mutants than those in WT plants. These results suggested that the ascorbate-deficient mutant vtc2-1 was more sensitive to chilling treatment than WT plants. The low temperature-induced oxidative stress was the major cause of the decrease of PSII and PSI function in the vtc2-1 mutants. Ascorbate plays a critical role of defense without which the rest of the ROS defense network is unable to react effectively.  相似文献   

8.
Ascorbate is an abundant and indispensable redox compound in plants. Genetic and biochemical studies have established the d -mannose/l -galactose (d -Man/l -Gal) pathway as the predominant ascorbate biosynthetic pathway in streptophytes, while the d -galacturonate (d -GalUA) pathway is found in prasinophytes and euglenoids. Based on the presence of the complete set of genes encoding enzymes involved in the d -Man/l -Gal pathway and an orthologous gene encoding aldonolactonase (ALase) – a key enzyme for the d -GalUA pathway – Physcomitrium patens may possess both pathways. Here, we have characterized the moss ALase as a functional lactonase and evaluated the ascorbate biosynthesis capability of the two pathways using knockout mutants. Physcomitrium patens expresses two ALase paralogs, namely PpALase1 and PpALase2. Kinetic analyses with recombinant enzymes indicated that PpALase1 is a functional enzyme catalyzing the conversion of l -galactonic acid to the final precursor l -galactono-1,4-lactone and that it also reacts with dehydroascorbate as a substrate. Interestingly, mutants lacking PpALase1 (Δal1) showed 1.2-fold higher total ascorbate content than the wild type, and their dehydroascorbate content was increased by 50% compared with that of the wild type. In contrast, the total ascorbate content of mutants lacking PpVTC2-1 (Δvtc2-1) or PpVTC2-2 (Δvtc2-2), which encode the rate-limiting enzyme GDP-l -Gal phosphorylase in the d -Man/l -Gal pathway, was markedly decreased to 46 and 17%, respectively, compared with that of the wild type. Taken together, the dominant ascorbate biosynthetic pathway in P. patens is the d -Man/l -Gal pathway, not the d -GalUA pathway, and PpALase1 may play a significant role in ascorbate metabolism by facilitating dehydroascorbate degradation rather than ascorbate biosynthesis.  相似文献   

9.
Ultraviolet-B (UV-B) radiation has a negative impact on plant cells, and results in the generation of reactive oxygen species (ROS). In order to increase our understanding of the effects of UV-B on antioxidant processes, we investigated the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc1 to short-term increased UV-B exposure. After UV-B supplementation, vtc1 mutants exhibited oxidative damage. Evidence for damage included an increase in H(2)O(2) content and the production of thiobarbituric acid reactive substances (TBARS); a decrease in chlorophyll content and chlorophyll fluorescence parameters were also reported. The vtc1 mutants had higher total glutathione than the wild type (WT) during the first day of UV-B treatment. We found reduced ratio of glutathione/total glutathione and increased ratio of dehydroascorbate/total ascorbate in the vtc1 mutants, compared to the WT plants. In addition, the enzymes responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, had insufficient activity in the vtc1 mutants, compared to the WT plants. The same reduced activity in the vtc1 mutants was reported for the enzymes responsible for the regeneration of ascorbate and glutathione (including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase). These results suggest that the ascorbate-deficient mutant vtc1 is more sensitive to supplementary UV-B treatment than WT plants and ascorbate can be considered an important antioxidant for UV-B radiation.  相似文献   

10.
The interplay between jasmonic acid (JA) and abscisic acid (ABA) in plant responses to water stress and in water-stress-enhanced oxidative stress was investigated in Arabidopsis thaliana plants subjected to water stress by water deprivation. For this purpose a drought assay was conducted using Arabidopsis mutants impaired in ABA (aba2), JA (aos), and ascorbate (vtc1) biosynthesis. Our results show an interaction between ABA and JA during their biosynthesis. Moreover, the coordinated action of ABA and JA protected wild-type, aba2, and aos plants from the effects of stress. However, this effect was not observed in the vtc1 mutant, which showed a distinct decrease in the F v/F m ratio, concomitant with a marked fall in relative water content (RWC), despite high endogenous concentrations of JA and ABA. This finding indicates the relevance of ascorbate metabolism in plant acclimation to stress. Despite the interaction between the two phytohormones, drought-associated stomatal closure is regulated mainly by ABA and weakly by JA, whereas JA plays a role in the formation of antioxidants regulating ascorbate and glutathione metabolism. A time course analysis revealed the relevance of plant age and stress duration in the responses of the mutants compared to wild-type plants. Here we discuss the relationship between ABA, JA, ascorbate, and glutathione in plants under water stress.  相似文献   

11.
Ascorbate is an important antioxidant in plants and fulfills many functions related to plant defense, redox signaling and modulation of gene expression. We have analyzed the subcellular distribution of reduced and oxidized ascorbate in leaf cells of Arabidopsis thaliana and Nicotiana tabacum by high-resolution immuno electron microscopy. The accuracy and specificity of the applied method is supported by several observations. First, preadsorption of the ascorbate antisera with ascorbic acid or dehydroascorbic acid resulted in the reduction of the labeling to background levels. Second, the overall labeling density was reduced between 50 and 61% in the ascorbate-deficient Arabidopsis mutants vtc1-2 and vtc2-1, which correlated well with biochemical measurements. The highest ascorbate-specific labeling was detected in nuclei and the cytosol whereas the lowest levels were found in vacuoles. Intermediate labeling was observed in chloroplasts, mitochondria and peroxisomes. This method was used to determine the subcellular ascorbate distribution in leaf cells of plants exposed to high light intensity, a stress factor that is well known to cause an increase in cellular ascorbate concentration. High light intensities resulted in a strong increase in overall labeling density. Interestingly, the strongest compartment-specific increase was found in vacuoles (fourfold) and in plastids (twofold). Ascorbate-specific labeling was restricted to the matrix of mitochondria and to the stroma of chloroplasts in control plants but was also detected in the lumen of thylakoids after high light exposure. In summary, this study reveals an improved insight into the subcellular distribution of ascorbate in plants and the method can now be applied to determine compartment-specific changes in ascorbate in response to various stress situations.  相似文献   

12.
Acclimation to changing environments, such as increases in light intensity, is necessary, especially for the survival of sedentary organisms like plants. To learn more about the importance of ascorbate in the acclimation of plants to high light (HL), vtc2, an ascorbate-deficient mutant of Arabidopsis, and the double mutants vtc2npq4 and vtc2npq1 were tested for growth in low light and HL and compared with the wild type. The vtc2 mutant has only 10% to 30% of wild-type levels of ascorbate, vtc2npq4 has lower ascorbate levels and lacks non-photochemical quenching of chlorophyll fluorescence (NPQ) because of the absence of the photosystem II protein PsbS, and vtc2npq1 is NPQ deficient and also lacks zeaxanthin in HL but has PsbS. All three genotypes were able to grow in HL and had wild-type levels of Lhcb1, cytochrome f, PsaF, and 2-cysteine peroxiredoxin. However, the mutants had lower electron transport and oxygen evolution rates and lower quantum efficiency of PSII compared with the wild type, implying that they experienced chronic photooxidative stress. The mutants lacking NPQ in addition to ascorbate were only slightly more affected than vtc2. All three mutants had higher glutathione levels than the wild type in HL, suggesting a possible compensation for the lower ascorbate content. These results demonstrate the importance of ascorbate for the long-term acclimation of plants to HL.  相似文献   

13.
Ascorbic acid: metabolism and functions of a multi-facetted molecule   总被引:2,自引:0,他引:2  
Ascorbic acid (vitamin C) is the most abundant antioxidant in plants. Its biosynthetic pathway via GDP-D-mannose and L-galactose, which was proposed only recently, is now supported by molecular genetic evidence from Arabidopsis thaliana and transgenic potato plants. Except for the last step (which is located on the inner mitochondrial membrane) the pathway is cytosolic, sharing GDP-sugar intermediates with cell-wall polysaccharide and glycoprotein synthesis. Ascorbate peroxidase is emerging as a key enzyme in the fine control of H(2)O(2) concentration; its expression being controlled by redox signals and H(2)O(2). Convincing evidence of the involvement of ascorbate in cell division and growth is also accumulating. Its role as a cofactor in the synthesis of cell wall hydroxyproline-rich glycoproteins is one mechanism for this function.  相似文献   

14.
Cadmium (Cd) interferes with ascorbate and glutathione metabolism as it induces the production of reactive oxygen species (ROS), binds to glutathione due to its high affinity to thiol groups, and induces the production of phytochelatins (PCs) which use glutathione as a precursor. In this study, changes in the compartment specific distribution of ascorbate and glutathione were monitored over a time period of 14 days in Cd-treated (50 and 100 μM) Arabidopsis Col-0 plants, and two mutant lines deficient in glutathione (pad2-1) and ascorbate (vtc2-1). Both mutants showed higher sensitivity to Cd than Col-0 plants. Strongly reduced compartment specific glutathione, rather than decreased ascorbate contents, could be correlated with the development of symptoms in these mutants suggesting that higher sensitivity to Cd is related to low glutathione contents rather than low ascorbate contents. On the subcellular level it became obvious that long-term treatment of wildtype plants with Cd induced the depletion of glutathione and ascorbate contents in all cell compartments except chloroplasts indicating an important protective role for antioxidants in chloroplasts against Cd. Additionally, we could observe an immediate decrease of glutathione and ascorbate in all cell compartments 12 h after Cd treatment indicating that glutathione and ascorbate are either withdrawn from or not redistributed into other organelles after their production in chloroplasts, cytosol (production centers for glutathione) and mitochondria (production center for ascorbate). The obtained data is discussed in respect to recently proposed stress models involving antioxidants in the protection of plants against environmental stress conditions.  相似文献   

15.
16.
Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.  相似文献   

17.
The possible role of L-ascorbate (AsA) as a biochemical signal during the interactions between photosynthesis and respiration was examined in leaf discs of Arabidopsis thaliana. AsA content was either decreased as in AsA-deficient vtc1 mutants or increased by treatment with L-galactono-1, 4-lactone (L-GalL, a precursor of AsA; EC 1.3.2.3). In mutants, photosynthesis was extremely sensitive to both antimycin A (inhibitor of the cytochrome c oxidase pathway [COX pathway]) and salicylhydroxamic acid (SHAM, inhibitor of the alternative pathway [AOX pathway]), particularly at high light conditions. Mitochondrial inhibitors lowered the ratio of reduced AsA to total AsA, at high light, indicating oxidative stress in leaf discs. Elevation of AsA by L-GalL decreased the sensitivity of photosynthesis at high light to antimycin A or SHAM, sustained photosynthesis at supraoptimal light and relieved the extent of photoinhibition. High ratios of reduced AsA to total AsA in L-GalL-treated leaf discs suggests that L-GalL lowers oxidative stress. The protection by L-GalL of photosynthesis against the mitochondrial inhibitors and photoinhibition was quite pronounced in vtc1 mutants. Our results suggest that the levels and redox state of AsA modify the pattern of modulation of photosynthesis by mitochondrial metabolism. The extent of the AOX pathway as a percentage of the total respiration in Arabidopsis mesophyll protoplasts was much higher in vtc1 than in wild type. We suggest that the role of AsA becomes pronounced at high light and/or when the AOX pathway is inhibited. While acknowledging the importance of the COX pathway, we hypothesize that AsA and the AOX pathway may complement each other to protect photosynthesis against photoinhibition.  相似文献   

18.
19.
20.
Recent advances in the role and biosynthesis of ascorbic acid in plants   总被引:7,自引:0,他引:7  
The past few years have provided many advances in the role and biosynthesis of L -ascorbic acid (AsA) in plants. There is an increasing body of evidence confirming that AsA plays an important role in the detoxification of reactive oxygen species. The role of AsA in photoprotection has been confirmed in vivo with the use of Arabidopsis mutants. A player in the defence against reactive oxygen species, AsA peroxidase, has been extensively studied at the molecular level, and regulation of this key enzymatic activity appears to occur at several levels. As a cofactor in the hydroxylation of prolyl and lysl-residues by peptidyl-prolyl and -lysyl hydroxylases, AsA plays a part in cell wall synthesis, defence, and possibly cell division. The maintenance of reduced levels of AsA appears to be highly regulated, involving the interplay of both monodehydroascorbate and dehydroascorbate reductases and possibly auxin. A major breakthrough in plant AsA biosynthesis has been made recently, and strong biochemical and genetic evidence suggest that GDP-mannose and L -galactose are key substrates. In addition, evidence for an alternative AsA biosynthetic pathway(s) exists and awaits additional scrutiny. Finally, newly described Arabidopsis mutants deficient in AsA will further increase our understanding of AsA biosynthesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号