首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高等植物中维生素C的功能、合成及代谢研究进展   总被引:26,自引:0,他引:26  
植物体内合成的维生素C在植物抗氧化和自由基清除、光合作用和光保护、细胞生长和分裂以及一些重要次生代谢物和乙烯的合成等方面具有非常重要的生理功能.维生素C的生物合成途径及其代谢调控的基因工程研究最近取得了突破.  相似文献   

2.
高等植物中维生素C 的功能、合成及代谢研究进展   总被引:1,自引:0,他引:1  
植物体内合成的维生素C在植物抗氧化和自由基清除、光合作用和光保护、细胞生长和分裂以及一些重要次生代谢物和乙烯的合成等方面具有非常重要的生理功能。维生素C的生物合成途径及其代谢调控的基因工程研究最近取得了突破。  相似文献   

3.
The Function of Tocopherols and Tocotrienols in Plants   总被引:1,自引:0,他引:1  
Referee: Dr. Kozi Asada, Department of Biotechnology, Faculty of Engineering, Fukuyama University, Gakuencho 1, Fukuyama 729-0292, Japan Tocopherols and tocotrienols, which differ only in the degree of saturation of their hydrophobic prenyl side chains, are lipid-soluble molecules that have a number of functions in plants. Synthesized from homogentisic acid and isopentenyl diphosphate in the plastid envelope, tocopherols and tocotrienols are essential to maintain membrane integrity. α-Tocopherol is the major form found in green parts of plants, while tocotrienols are mostly found in seeds. These compounds are antioxidants, thus they protect the plant from oxygen toxicity. Tocopherols and tocotrienols scavenge lipid peroxy radicals, thereby preventing the propagation of lipid peroxidation in membranes, and the ensuing products tocopheroxyl and tocotrienoxyl radicals, respectively, are recycled back to tocopherols and tocotrienols by the concerted action of other antioxidants. Furthermore, tocopherols and tocotrienols protect lipids and other membrane components by physically quenching and reacting chemically with singlet oxygen. The scavenging of singlet oxygen by α-tocopherol in chloroplasts results in the formation of, among other products, α -tocopherol quinone, a known contributor to cyclic electron transport in thylakoid membranes, therefore providing photoprotection for chloroplasts. Moreover, given that α-tocopherol increases membrane rigidity, its concentration, together with that of the other membrane components, might be regulated to afford adequate fluidity for membrane function. Furthermore, α-tocopherol may affect intracellular signaling in plant cells. The effects of this compound in intracellular signaling may be either direct, by interacting with key components of the signaling cascade, or indirect, through the prevention of lipid peroxidation or the scavenging of singlet oxygen. In the latter case, α-tocopherol may regulate the concentration of reactive oxygen species and plant hormones, such as jasmonic acid, within the cell, which control both the growth and development of plants, and also plant response to stress.  相似文献   

4.
《Free radical research》2013,47(5):337-345
Abstract

The major causes for cataract formation are free radicals, and these free radicals are neutralized by the presence of endogenous antioxidants in the eye. Using xenobiotics, it has been confirmed that free radicals mediate the formation of cataract. Two cataract model-selenite model and the diabetic cataract model-have been developed to study the pathophysiology of cataract formation due to free radicals and the role of antioxidants during the process of cataractogenesis. This review focuses on natural compounds with antioxidant properties that could actually be applied as an interventional strategy on a large scale and are also relatively inexpensive. A brief overview of plants with antioxidant properties that in addition possess potential anti-cataract properties has been discussed. In addition to plants, three natural compounds (curcumin, vitamin C and vitamin E), on which a lot of data exist showing anti-cataract and antioxidant activities, have also been discussed. These antioxidants can be supplemented in the diet for a better defence against free radicals. Studies on vitamin C and vitamin E have proved that they are capable of preventing lipid peroxidation, thereby preventing the generation of free radicals, but their efficacy as anti-cataract agent is questionable. Unlike vitamins C and E, curcumin is well established as an anti-cataract agent, but the issue of curcumin bioavailability is yet to be addressed. Nanotechnology proves to be a promising area in increasing the curcumin bioavailability, but still a lot more research needs to be done before the use of curcumin as an effective anti-cataract agent for humans.  相似文献   

5.
BOTANICAL BRIEFING: The Function and Metabolism of Ascorbic Acid in Plants   总被引:2,自引:0,他引:2  
Ascorbate is a major metabolite in plants. It is an antioxidantand, in association with other components of the antioxidantsystem, protects plants against oxidative damage resulting fromaerobic metabolism, photosynthesis and a range of pollutants.Recent approaches, using mutants and transgenic plants, areproviding evidence for a key role for the ascorbate–glutathionecycle in protecting plants against oxidative stress. Ascorbateis also a cofactor for some hydroxylase enzymes (e.g. prolylhydroxylase) and violaxanthin de-epoxidase. The latter enzymelinks ascorbate to the photoprotective xanthophyll cycle. Arole in regulating photosynthetic electron transport has beenproposed. The biosynthetic pathway of ascorbate in plants hasnot been identified and evidence for the proposed pathways isreviewed. Ascorbate occurs in the cell wall where it is a firstline of defence against ozone. Cell wall ascorbate and cellwall-localized ascorbate oxidase (AO) have been implicated incontrol of growth. High AO activity is associated with rapidlyexpanding cells and a model which links wall ascorbate and ascorbateoxidase to cell wall extensibility is presented. Ascorbate hasalso been implicated in regulation of cell division by influencingprogression from G1 to S phase of the cell cycle. There is aneed to increase our understanding of this enigmatic moleculesince it could be involved in a wide range of important functionsfrom antioxidant defence and photosynthesis to growth regulation. Ascorbic acid; ascorbate oxidase; cell division; cell wall; growth; oxidative stress; photosynthesis; ozone; vitamin C  相似文献   

6.
植物抗坏血酸的合成和代谢以及相关酶基因的调控   总被引:2,自引:0,他引:2  
本文对植物抗坏血酸的生物合成与代谢途径以及相关酶基因调控的研究进展作介绍。  相似文献   

7.
抗坏血酸是水溶性抗氧化有机小分子,在植物中广泛存在,并可作为某些氧化还原酶的辅酶。本文主要综述了抗坏血酸在植物中的合成、转运和所参与的多种生理作用,如细胞周期调控、成花诱导、光合结构保护、碳代谢和胁迫响应等,并对今后植物中抗坏血酸的相关研究提出展望。  相似文献   

8.
Oxidative stress associated with reactive oxygen species (ROS) and cytokines produced by immune cells, which is involved in septic shock caused by endotoxin, can be controlled to a certain degree by antioxidants with free radical scavenging action. N-acetylcysteine (NAC) and ascorbic acid (AA) are ROS scavengers that improve the immune response, and modulate macrophage function in mice with endotoxin-caused oxidative stress. Therefore, we have investigated the in vitro effects of these antioxidants on the functions of lymphocytes from BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg). Adherence to tissues and chemotaxis (the earliest two functions of lymphocytes in the immune response), as well as ROS levels and TNFα production were determined in the presence or absence of NAC or AA (0.001, 0.01, 0.1, 1 and 2.5 mM) in lymphocytes from peritoneum, axillary nodes, spleen and thymus obtained at several times (2, 4, 12 and 24 hours) after LPS injection. Endotoxic shock decreases the chemotaxis of lymphocytes from all the above localizations and increases their adherence, TNFα and ROS production. These changes in lymphocyte function were counteracted by NAC and AA, bringing these functions to values near those of control animals. Our data suggest that lymphocytes are important targets of endotoxins contributing to oxidative stress by septic shock, and that antioxidants can preserve the function of lymphocytes, preventing the homeostatic disturbances caused by endotoxin.  相似文献   

9.
Although smooth muscle and endothelial cells in pig coronary artery are morphologically and functionally distinct, ascorbate uptake has been characterized only in smooth muscle cells. Ascorbate transporters in kidney and intestinal epithelial cells differ from those in smooth muscle. We examined ascorbate transport and mRNA expression of sodium-dependent vitamin C transporters (SVCT) by RT-PCR in the pig coronary artery endothelial cell cultures. When 14C-ascorbate uptake in endothelial cells was examined as 14C or by HPLC, the two values did not differ from each other. 14C-ascorbate uptake was Na+-dependent, stereoselective for l-ascorbate and inhibited by sulfinpyrazone. The kinetic characteristics of the uptake were: Km = 27± 3 M (Hill coefficient = 1) for ascorbate and Km = 73± 14 mM (Hill coefficient = 2) for Na+. Surprisingly, endothelial cells had similar kinetic parameters as smooth muscle cells, except for a slightly lower uptake velocity in endothelial cells. Comparison with the smooth muscle showed that both tissue types expressed mRNA for SVCT2. Endothelial cells differ from epithelial cells which express mainly SVCT1 but resemble smooth muscle cells in this respect. (Mol Cell Biochem 271: 43–49, 2005)  相似文献   

10.
Cardiopulmonary bypass (CPB) is associated with oxidative stress. This study examined antioxidant levels in adults undergoing CPB surgery and their correlation with clinical variables. Arterial blood samples were obtained from 27 patients undergoing CPB. The time-course variation of vitamin C (spectrofluorimetry), α-tocopherol and retinol (HPLC) levels were determined. Plasma vitamin C rose initially but gradually decayed during reperfusion until 60% reduction of baseline values post-surgery. α-Tocopherol and retinol were reduced along CPB with post-operative values ~25% lower than baseline. No significant changes were found for selenium and glutathione peroxidase. PaO2 values rose steadily throughout CPB. A correlation existed for α-tocopherol and retinol depletion vs maximal PaO2 throughout CPB but no correlation was found for antioxidant consumption vs duration of ischaemia and reperfusion and hypothermia level. In conclusion, consumption of arterial blood antioxidant vitamins occurs with CPB in relation with PaO2 levels but not for other clinical variables measured in this study.  相似文献   

11.
Intense exercise induces inflammatory-like changes and oxidative stress in immune cells. Our aim was to study the effects of antioxidant diet supplementation on the neutrophil inflammatory response and on the tocopherol associated protein (TAP) expression after exhaustive exercise. Fourteen male-trained amateur runners were randomly divided in two placebo and supplemented groups. Vitamins C (152 mg/d) and E (50 mg/d) supplementation were administrated to the athletes for a month, using an almond based isotonic and energetic beverage. Non-enriched beverage was given to the placebo group. After one month, the subjects participated in a half-marathon race (21 km-run). Neutrophil TAP mRNA expression and markers of the inflammatory response were determined before, immediately after, and 3 h after finishing the half-marathon race. TAP expression increased after exercise mainly in the neutrophils of the placebo group. Exercise induced an inflammatory response in both placebo and supplemented groups, manifested with neutrophilia, increased creatine kinase and lactate dehydrogenase serum activities, neutrophil luminol chemiluminescence and myeloperoxidase release. Plasma malondialdehyde only increased in the placebo group after exercise. Diet supplementation with moderate levels of antioxidant vitamins avoids plasma damage in response to exhaustive exercise without the effects on the inflammatory process. Neutrophil degranulation and increased tocopherol associated protein could contribute to the neutrophil protection from the oxidative stress.  相似文献   

12.
Fifteen β-thalassemia intermedia patients, not requiring chronic transfusional therapy, were monitored in order to check their antioxidant status, and the lipid oxidation products in plasma, LDL, and erythrocytes before and during a 9-month oral treatment with 600 mg/day vitamin E. The low level of vitamin E, and high level of malondialdehyde in plasma clearly tended to normalize after three months (P<.001), and were quite similar to control after six months. The abnormally low level of vitamin E in LDL and the four times higher than control basal level of conjugated dienes (LDL-CD), were not modified after three months of treatment. Significant changes of LDL-VE (P<.05) and of the basal LDL-CD (P<.001) were evident after six months. LDL-VE was within the normal range after nine months, whereas LDL-CD still appeared twice as higher than control.

Plasma vitamin A, ascorbate, β-carotene, and lycopene increased markedly at the end of the trial (P<.005).

The level of vitamin E in red blood cells was normalized after six months of supplementation. A decrease of the baseline value of conjugated dienes was observed after nine months, although it remained 1.4-fold higher than control. The RBC count and hematocrit appeared higher at the end of the trial (P<.05 and P<.001, respectively). The hemoglobin value did not show variations. A shift to normal of the resistance of erythrocytes to osmotic lysis was observed.

Our findings provide evidence that an oral treatment with vitamin E improves the antioxidant/oxidant balance in plasma, LDL particles, and red blood cells, and counteracts lipid peroxidation processes in β-thalassemia intermedia patients.  相似文献   

13.
Doxorubicin (DOX) is a chemotherapeutic agent, and is widely used in cancer treatment. The most common side effect of DOX was indicated on cardiovascular system by experimental studies. There are some studies suggesting oxidative stress-induced toxic changes on liver related to DOX administration. The aim of the present study was to evaluate whether antioxidant N-acetylcysteine (NAC) relieves oxidative stress in DOX- induced liver injury in rat. Twenty-four male rats were equally divided into three groups. First group was used as a control. Second group received single dose of DOX. NAC for 10 days was given to constituting the third group after giving one dose of DOX. After 10 days of the experiment, liver tissues were taken from all animals. Lipid peroxidation (LP) levels were higher in the DOX group than in control whereas LP levels were lower in the DOX+NAC group than in control. Vitamin C and vitamin E levels were lower in the DOX group than in control whereas vitamin C and vitamin E levels were higher in the DOX+NAC group than in the DOX group. Reduced glutathione levels were higher in the DOX+NAC group than in control and DOX group. Glutathione peroxidase, vitamin A and β-carotene values were not changed in the three groups by DOX and NAC administrations. In histopathological evaluation of DOX group, there were mononuclear cell infiltrations, vacuolar degeneration, hepatocytes with basophilic nucleus and sinusoidal dilatations. The findings were totally recovered by NAC administration. In conclusion, N-acetylcysteine induced modulator effects on the doxorubicin-induced hepatoxicity by inhibiting free radical production and supporting the antioxidant vitamin levels.  相似文献   

14.
L-Ascorbic acid (AsA) is a vital antioxidant compound that plays a critical role in the cellular metabolism of plants and animals. Research on plant AsA metabolism experienced a significant resurgence after 1998 following the identification of AsA-deficient Arabidopsis mutants and the elucidation of a biosynthetic pathway accepted by the overwhelming majority of the plant science community. The identification and cloning of novel biosynthetic genes and the ensuing metabolic engineering of plant AsA content has however revealed a more complex picture. Additional biosynthetic routes have been identified and unexpected biochemical phenotypes were observed upon expression of animal AsA biosynthetic genes. The isolation of novel AsA conjugates from plant tissues and the evidence for long distance transport of AsA in plants have provided additional facets to its functionality. Although some progress has been made regarding the impact of AsA recycling on pool size, we still do not have a clear picture of the biochemistry of AsA degradation. This communication comprehensively reviews new developments in the AsA metabolic system and prompts directions for future research.  相似文献   

15.
Oxidative stress (OS) plays an important role in the process of ovarian granulosa cell apoptosis and follicular atresia. The aim of this study was to select antioxidant against OS in ovary tissue. Firstly, we chose the six antioxidants and analyzed the reactive oxygen species (ROS) level in the ovary tissue. The results showed that proanthocyanidins, gallic acid, curcumin, and carotene decrease the ROS level compared with control group. We further demonstrated that both proanthocyanidins and gallic acid increase the antioxidant enzymes activity. Moreover, change in the ROS level was not observed in proanthocyanidins and gallic acid group of brain, liver, spleen, and kidney tissues. Finally, we found that proanthocyanidins and gallic acid inhibit pro‐apoptotic genes expression in granulosa cells. Taken together, proanthocyanidins and gallic acid may be the most acceptable and optimal antioxidants specifically against ovarian OS and also may be involved in the inhibition of granulosa cells apoptosis in mouse ovary.  相似文献   

16.
17.
The Biosynthesis of Salicylic Acid in Potato Plants   总被引:1,自引:0,他引:1  
  相似文献   

18.
The Function of Ascorbic Acid in Photosynthetic Phosphorylation   总被引:7,自引:2,他引:5       下载免费PDF全文
Forti G  Elli G 《Plant physiology》1995,109(4):1207-1211
Ascorbate is oxidized to the free radical monodehydroascorbate by O2.- and by H2O2 (through the action of ascorbate peroxidase) formed in the Mehler reaction by isolated spinach (Spinacia oleracea) thylakoids. Light-dependent electron transport from water to monodehydroascorbate is shown to be coupled to ATP formation with a ratio ATP:O2 of 2. In the presence of ascorbate the net O2 exchange balance of the Mehler reaction is close to zero, and the synthesis of ATP is increased 2 to 3 times due to the extra electron transport to the monodehydroascorbate free radical. A scheme of the electron transport in the presence of ascorbate is discussed.  相似文献   

19.
Quantitative trait loci (QTL) mapping is a step towards the identification of factors regulating traits such as fruit ascorbic acid content. A previously identified QTL controlling variations in tomato fruit ascorbic acid has been fine mapped and reveals that the QTL has a polygenic and epistatic architecture. A monodehydroascorbate reductase (MDHAR) allele is a candidate for a proportion of the increase in fruit ascorbic acid content. The MDHAR enzyme is active in different stages of fruit ripening, shows increased activity in the introgression lines containing the wild-type ( Solanum pennellii ) allele, and responds to chilling injury in tomato along with the reduced/oxidized ascorbate ratio. Low temperature storage of different tomato introgression lines with all or part of the QTL for ascorbic acid and with or without the wild MDHAR allele shows that enzyme activity explains 84% of the variation in the reduced ascorbic acid levels of tomato fruit following storage at 4 °C, compared with 38% at harvest under non-stress conditions. A role is indicated for MDHAR in the maintenance of ascorbate levels in fruit under stress conditions. Furthermore, an increased fruit MDHAR activity and a lower oxidation level of the fruit ascorbate pool are correlated with decreased loss of firmness because of chilling injury.  相似文献   

20.
Based on author’s own and literature data, possible mechanisms of initiation, development, and reparation of cell damages in chilling-sensitive plants during and after chilling are reviewed. A conception of initiation and development of chilling injury, based on a key role of oxidative stress, is put forward. Possible mechanisms of structural and functional changes in cells of chilling-sensitive plants subjected to chilling stress are discussed.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 608–613.Original Russian Text Copyright © 2005 by Lukatkin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号