首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal quescent cells maintain membrane lipid asymmetry by ATP-dependent membrane lipid transporters, which shuttle different phospholipids from one leaflet to the other against their respective concentration gradients. When cells are challenged, membrane lipid asymmetry can be perturbed resulting in exposure of phosphatidylserine [PS] at the outer cell surface. Translocation of PS from the inner to outer membrane leaflet of activated blood platelets and platelet-derived microvesicles provides a catalytic surface for interacting coagulation factors. This process is dramatically impaired in Scott syndrome, a rare congenital bleeding disorder, underscoring the indispensible role of PS in hemostasis. This also testifies to a defect of a protein-catalyzed scrambling of membrane phospholipids. The Scott phenotype is not restricted to platelets, but can be demonstrated in other blood cells as well. The functional aberrations observed in Scott syndrome have increased our understanding of transmembrane lipid movements, and may help to identify the molecular elements that promote the collapse of phospholipid asymmetry during cell activation and apoptosis.  相似文献   

2.
Geminin plays an important role in coordinating the cell cycle with anterior–posterior patterning during embryonic development. However, whether it is involved in the regulation of left–right (LR) patterning remains unknown. Here, we reported that geminin is required for setting up heart and visceral laterality during zebrafish development. Defective heart and visceral laterality was observed in geminin morphants. Further study demonstrated that the left-sided nodal/spaw in the lateral plate mesoderm (LPM) as well as the sideness of its downstream targets lefty2 and lefty1 was perturbed in geminin morphants. Upstream of the left-sided Nodal signal along the regulatory cascade of LR asymmetry, knock down of geminin resulted in defective Kupffer’s vesicle (KV) formation and ciliogenesis rather than middle line defects. Predominant distribution of an antisense morpholino against geminin in dorsal forerunner cells (DFCs) led to defective KV morphogenesis and perturbed LR asymmetry, similar to those of geminin morphants, indicating a cell-autonomous role of geminin in regulating KV formation and ciliogenesis. Our results demonstrate that geminin is required for proper KV formation and ciliogenesis, thus playing an important part in setting up LR asymmetry.  相似文献   

3.
The resemblance of lipid membrane models to physiological membranes determines how well molecular dynamics (MD) simulations imitate the dynamic behavior of cell membranes and membrane proteins. Physiological lipid membranes are composed of multiple types of phospholipids, and the leaflet compositions are generally asymmetric. Here we describe an approach for self-assembly of a Coarse-Grained (CG) membrane model with physiological composition and leaflet asymmetry using the MARTINI force field. An initial set-up of two boxes with different types of lipids according to the leaflet asymmetry of mammalian cell membranes stacked with 0.5 nm overlap, reliably resulted in the self-assembly of bilayer membranes with leaflet asymmetry resembling that of physiological mammalian cell membranes. Self-assembly in the presence of a fragment of the plasma membrane protein syntaxin 1A led to spontaneous specific positioning of phosphatidylionositol(4,5)bisphosphate at a positively charged stretch of syntaxin consistent with experimental data. An analogous approach choosing an initial set-up with two concentric shells filled with different lipid types results in successful assembly of a spherical vesicle with asymmetric leaflet composition. Self-assembly of the vesicle in the presence of the synaptic vesicle protein synaptobrevin 2 revealed the correct position of the synaptobrevin transmembrane domain. This is the first CG MD method to form a membrane with physiological lipid composition as well as leaflet asymmetry by self-assembly and will enable unbiased studies of the incorporation and dynamics of membrane proteins in more realistic CG membrane models.  相似文献   

4.
Directional cell movement in response to external chemical gradients requires establishment of front–rear asymmetry, which distinguishes an up-gradient protrusive leading edge, where Rac-induced F-actin polymerization takes place, and a down-gradient retractile tail (uropod in leukocytes), where RhoA-mediated actomyosin contraction occurs. The signals that govern this spatial and functional asymmetry are not entirely understood. We show that the human type I phosphatidylinositol 4-phosphate 5-kinase isoform β (PIPKIβ) has a role in organizing signaling at the cell rear. We found that PIPKIβ polarized at the uropod of neutrophil-differentiated HL60 cells. PIPKIβ localization was independent of its lipid kinase activity, but required the 83 C-terminal amino acids, which are not homologous to other PIPKI isoforms. The PIPKIβ C terminus interacted with EBP50 (4.1-ezrin-radixin-moesin (ERM)-binding phosphoprotein 50), which enabled further interactions with ERM proteins and the Rho-GDP dissociation inhibitor (RhoGDI). Knockdown of PIPKIβ with siRNA inhibited cell polarization and impaired cell directionality during dHL60 chemotaxis, suggesting a role for PIPKIβ in these processes.  相似文献   

5.
6.
Gram‐negative bacteria can survive in harsh environments in part because the asymmetric outer membrane (OM) hinders the entry of toxic compounds. Lipid asymmetry is established by having phospholipids (PLs) confined to the inner leaflet of the membrane and lipopolysaccharides (LPS) to the outer leaflet. Perturbation of OM lipid asymmetry, characterized by PL accumulation in the outer leaflet, disrupts proper LPS packing and increases membrane permeability. The multi‐component Mla system prevents PL accumulation in the outer leaflet of the OM via an unknown mechanism. Here, we demonstrate that in Escherichia coli, the Mla system maintains OM lipid asymmetry with the help of osmoporin OmpC. We show that the OM lipoprotein MlaA interacts specifically with OmpC and OmpF. This interaction is sufficient to localize MlaA lacking its lipid anchor to the OM. Removing OmpC, but not OmpF, causes accumulation of PLs in the outer leaflet of the OM in stationary phase, as was previously observed for MlaA. We establish that OmpC is an additional component of the Mla system; the OmpC‐MlaA complex may function to remove PLs directly from the outer leaflet to maintain OM lipid asymmetry. Our work reveals a novel function for the general diffusion channel OmpC in lipid transport.  相似文献   

7.
8.
Transbilayer lipid asymmetry is a fundamental characteristic of the eukaryotic cell plasma membrane (PM). While PM phospholipid asymmetry is well documented, the transbilayer distribution of PM sterols such as mammalian cholesterol and yeast ergosterol is not reliably known. We now report that sterols are asymmetrically distributed across the yeast PM, with the majority (~80%) located in the cytoplasmic leaflet. By exploiting the sterol‐auxotrophic hem1Δ yeast strain we obtained cells in which endogenous ergosterol was quantitatively replaced with dehydroergosterol (DHE), a closely related fluorescent sterol that functionally and accurately substitutes for ergosterol in vivo. Using fluorescence spectrophotometry and microscopy we found that <20% of DHE fluorescence was quenched when the DHE‐containing cells were exposed to membrane‐impermeant collisional quenchers (spin‐labeled phosphatidylcholine and trinitrobenzene sulfonic acid). Efficient quenching was seen only after the cells were disrupted by glass‐bead lysis or repeated freeze‐thaw to allow quenchers access to the cell interior. The extent of quenching was unaffected by treatments that deplete cellular ATP levels, collapse the PM electrochemical gradient or affect the actin cytoskeleton. However, alterations in PM phospholipid asymmetry in cells lacking phospholipid flippases resulted in a more symmetric transbilayer distribution of sterol. Similarly, an increase in the quenchable pool of DHE was observed when PM sphingolipid levels were reduced by treating cells with myriocin. We deduce that sterols comprise up to ~45% of all inner leaflet lipids in the PM, a result that necessitates revision of current models of the architecture of the PM lipid bilayer.   相似文献   

9.
The degree of fluctuating asymmetry has been demonstrated to reflect the ability of individuals to cope with different kinds of environmental stress (Parsons 1990). Parasites and diseases are one kind of environmental stress which most individuals encounter during their lifetime. Parasites have also been suggested to play an important role in sexual selection and the development of ornaments, since the full expression of ornaments may reflect the ability of hosts to cope with the debilitating effects of parasites. Here I report for the first time that a parasite, the haematophagous tropical fowl mite Ornithonyssus bursa (Macronyssidae, Gamasida), directly affects the degree of fluctuating asymmetry in a secondary sexual character of its host, the elongated tail of the swallow Hirundo rustica (Aves: Hirundinidae). I experimentally manipulated the mite load of swallow nests during one season by either increasing or reducing the number of mites, or keeping nests as controls. The degree of fluctuating asymmetry was measured in the subsequent year after the swallows had grown new tail ornaments under the altered parasite regime. The degree of fluctuating asymmetry was larger at increasing levels of parasites for male tail length, but not for the length of the shortest tail feather or wing length or for tail and wing length in females. These results suggest that the degree of fluctuating asymmetry in tail ornaments, but not in other feather traits, reliably reveals the level of parasite infestation. This has important implications for the ability of conspecifics to use the size and the expression of ornaments in assessment of phenotypic quality and thus in sexual selection.  相似文献   

10.
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P4-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P4-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P4-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

11.
12.
In most oviparous animals, lipoprotein‐mediated lipid transport plays an important role in the nutrient supply for the oocyte. In male gametes, lipids are used as energy substrates in spermatozoa but nothing is yet known about their origin and metabolism throughout spermatogenesis. The lipid profiles analyzed from different stages of male germ cell development in the marine annelid Nereis virens were found to undergo a dramatic change from primary triacylglycerides at the beginning of germ cell development to cholesterol and phospholipids at the end of development as demonstrated by HPLC with evaporative light scattering detection and mass spectrometry. The uptake of a large discoidal lipoprotein into the developing germ cells could be demonstrated by fluorescence labeling and electron microscopic techniques as well as by the presence of a lipoprotein receptor in the germ cells, thus establishing its role in lipid supply. The incorporated lipoprotein discs were found to be stored as intact complexes indicating that they are not readily degraded upon endocytotic uptake. The change in lipid composition during germ cell development reflects their metabolic activity, especially in spermatogonia. The high concentration of lipids maintained by spermatogonia during the early phase of gametogenesis seems to be required for the later rapid processes of meiosis and spermatocyte differentiation. At times when peak demand of lipids arises for membrane synthesis and increased metabolism, this may be met more efficiently by a rapid on‐site mobilization of lipids instead of an external supply. Mol. Reprod. Dev. 77: 710–719, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
The effect of nonideal lateral mixing on the transmembrane lipid asymmetry   总被引:2,自引:0,他引:2  
It is shown that the equilibrium transmembrane lipid asymmetry strongly depends on the degree of nonideality in the lateral mixing of the lipid components. In two-component bilayers the effect of nonideal lateral mixing is maximal for a given component at mole fractions of this component between 0.35 and 0.4. For asymmetry creating factors about 3 kT correcting for lateral nonidealities typical for lipids can increase as much as three times the transmembrane asymmetry. The relationship between lateral nonideality and transbilayer asymmetry is analysed in detail in the case of electrostatically induced asymmetry by using the Gouy-Chapman theory of electric double layers and the Bragg-Williams (regular solutions) approximation of nonideal lateral mixing. Two representative models are studied: (a) a single flat bilayer with a transmembrane electric potential difference applied on it; (b) two parallel membranes at short separation. In case (a), for transmembrane potentials of about 50-100 mV the introduction of nonideality corrections increases up to 40% the transmembrane asymmetry. In case (b), at physiological electrolyte concentrations the lipid asymmetry and, consequently, the effect of lateral nonideality become significant only at unrealistically small separations between the membranes. The surprisingly great influence of the lateral nonideality on the equilibrium transmembrane asymmetry suggests a significant role for this effect in determining the membrane molecular organization. A restricted lateral lipid miscibility might serve as a peculiar, but rather strong 'amplifier' of the transmembrane asymmetry. The qualitatively different asymmetries found in small unilamellar phosphatidylcholine-phosphatidylethanolamine vesicles of different fatty acid composition (Lentz, B.R. and Litman, B.J. (1978) Biochemistry 17, 5537-5543) can be reasonably well explained as an effect of the lateral nonideality. A hypothesis considering the transmembrane distributions of the major phospholipid species in erythrocytes as evolving from their lateral miscibilities is proposed.  相似文献   

14.
Membrane phospholipid asymmetry is considered to be a general property of biological membranes. Detailed information is presently available on the non-random orientation of phospholipids in red cell- and platelet membranes. The outer leaflet of the lipid bilayer membrane is rich in choline-phospholipids, whereas amino-phospholipids are abundant in the inner leaflet. Studies with blood platelets have shown that these asymmetries are not maintained when the cells are activated in various ways. Undoing the normal asymmetry of membrane phospholipids in activated blood cells is presumably mediated by increased transbilayer movement of phospholipids. This process, which leads to increased exposure of negatively charged phosphatidylserine at the outer surface, plays an important physiological role in local blood clotting reactions. A similar phenomenon occurs in sickled red cells. Phospholipid vesicles breaking off from reversibly sickled cells contribute similarly to intravascular clotting in the crisis phase of sickle cell disease.The loss of membrane phospholipid asymmetry in activated platelets seems to be strictly correlated with degradation of cytoskeletal proteins by endogenous calpain. It is remarkable that membrane phospholipid asymmetry can be (partly) restored when activated platelets are treated with reducing agents. This leads to disappearance of phosphatidylserine from the outer leaflet where it was previously exposed during cell activation. These observations will be discussed in relation to two mechanisms which have been recognized to play a role in the regulation of membrane phospholipid asymmetry; i.e. the interaction of aminophospholipids to cytoskeletal proteins, and the involvement of a phospholipid-translocase catalyzing outward-inward transbilayer movement of amino-phospholipids.  相似文献   

15.
Biogenesis of the outer membrane (OM) in Gram‐negative bacteria, which is essential for viability, requires the coordinated transport and assembly of proteins and lipids, including lipopolysaccharides (LPS) and phospholipids (PLs), into the membrane. While pathways for LPS and OM protein assembly are well‐studied, how PLs are transported to and from the OM is not clear. Mechanisms that ensure OM stability and homeostasis are also unknown. The trans‐envelope Tol‐Pal complex, whose physiological role has remained elusive, is important for OM stability. Here, we establish that the Tol‐Pal complex is required for PL transport and OM lipid homeostasis in Escherichia coli. Cells lacking the complex exhibit defects in lipid asymmetry and accumulate excess PLs in the OM. This imbalance in OM lipids is due to defective retrograde PL transport in the absence of a functional Tol‐Pal complex. Thus, cells ensure the assembly of a stable OM by maintaining an excess flux of PLs to the OM only to return the surplus to the inner membrane. Our findings also provide insights into the mechanism by which the Tol‐Pal complex may promote OM invagination during cell division.  相似文献   

16.
Cell–cell separation of a polychlorinated biphenyl (PCB)-degrading bacterium Comamonas testosteroni TK102 was monitored by flow cytometry. When monohydroxy metabolites of biphenyl (BP) (2-hydroxybiphenyl and 3-hydroxybiphenyl) were added to the culture, cell–cell separation of strain TK102 was inhibited at stationary phase. This inhibition was reproduced on non-PCB degrading bacteria such as Pseudomonas putida PpY101 and Escherichia coli MV1184, but was not observed on Pseudomonas aeruginosa PAO1. An opportunistic pathogen, P. aeruginosa PAO1, produces exopolysaccharide, which is known to scavenge damaging chemicals such as reactive oxygen species (ROS). The higher level of ROS and lipid peroxidants were detected in the cells treated by monohydroxybiphenyls. Fat-soluble vitamin E, which is a lipid radical scavenger, maintained bacterial cell separation during monohydroxybiphenyls treatment. Our results demonstrated that intracellular oxidative stress played an important role in the inhibition of bacterial cell separation during BP metabolism. This study shows that metabolites of environmental pollutants, such as monohydroxylated BP, inhibit bacterial cell separation by oxidative stress.  相似文献   

17.
Lipid translocation across the plasma membrane of mammalian cells.   总被引:25,自引:0,他引:25  
The plasma membrane, which forms the physical barrier between the intra- and extracellular milieu, plays a pivotal role in the communication of cells with their environment. Exchanging metabolites, transferring signals and providing a platform for the assembly of multi-protein complexes are a few of the major functions of the plasma membrane, each of which requires participation of specific membrane proteins and/or lipids. It is therefore not surprising that the two leaflets of the membrane bilayer each have their specific lipid composition. Although membrane lipid asymmetry has been known for many years, the mechanisms for maintaining or regulating the transbilayer lipid distribution are still not completely understood. Three major players have been presented over the past years: (1) an inward-directed pump specific for phosphatidylserine and phosphatidylethanolamine, known as aminophospholipid translocase; (2) an outward-directed pump referred to as 'floppase' with little selectivity for the polar headgroup of the phospholipid, but whose actual participation in transport of endogenous lipids has not been well established; and (3) a lipid scramblase, which facilitates bi-directional migration across the bilayer of all phospholipid classes, independent of the polar headgroup. Whereas a concerted action of aminophospholipid translocase and floppase could, in principle, account for the maintenance of lipid asymmetry in quiescent cells, activation of the scramblase and concomitant inhibition of the aminophospholipid translocase causes a collapse of lipid asymmetry, manifested by exposure of phosphatidylserine on the cell surface. In this article, each of these transporters will be discussed, and their physiological importance will be illustrated by the Scott syndrome, a bleeding disorder caused by impaired lipid scrambling. Finally, phosphatidylserine exposure during apoptosis will be briefly discussed in relation to inhibition of translocase and simultaneous activation of scramblase.  相似文献   

18.
We studied changes in the motor asymmetry of the goldfish induced by single-session long-lasting vestibular stimulations (clockwise and counter clockwise rotations around the rostro-caudal body axis) and repetitive everyday short sessions of such stimulation (training); the latter mode led to the development of adaptation (resistance to fatigue). Rotational stimulation of different durations and directions elicited effects of different patterns and intensities. Such stimulation enhanced or, vice versa, smoothed the motor asymmetry in “dextral” and “ sinistral” fishes, up to full symmetry or even a change of the preferred turning direction. Adaptation to unilateral rotational stimulation allows an experimenter to selectively and gradually induce the resistivity of the left-or right-ward asymmetry to fatigue effects. Earlier, we found that the motor asymmetry in the goldfish, which is determined by the functional asymmetry of the brain, correlates with the morphological asymmetry of Mauthner neurons localized in the medulla in a mirror manner and playing a crucial role in the control of turnings in the course of locomotion (swimming). Experimental rotational stimulation-induced gradual modification of the motor asymmetry in the goldfish can serve as a physiological model for more detailed studies of the structural base of the functional brain asymmetry and some mechanisms of adaptation on the level of single neurons. Neirofiziologiya/Neurophysiology, Vol. 37, Nos. 5/6, pp. 432–442, September–December, 2005.  相似文献   

19.
 The objective of this study was to investigate if in asymmetric protoplast fusion experiments the ploidy of the recipient line (di-haploid and tetraploid) has an influence on the extent of the asymmetry of the regenerating fusion products. Nineteen different experiments with the wild species Solanum bulbocastanum and Solanum circaeifolium as donors (irradiated with 210 Gy) and different breeding lines (di-haploid and tetraploid) were carried out. The degree of genome elimination was determined by measuring the relative DNA content using flow cytometry. The data showed that the loss of DNA in hybrid plants was significantly higher for 4x, compared to 2x, plants as recipients. In addition, the stability of asymmetry in the fusion products was studied. For this purpose differences in asymmetry in individual shoots originating from the same callus were analysed. A large variation in the DNA content of individual shoots was detected. Of the 4x to 6x shoots 44% had the same DNA content as another shoot originating from the same callus, 19% had a DNA content between 4x and 6x but different from any other analysed shoot originating from the same callus, 2% were chimeras and 35% had a completely different DNA content (eutetraploid, euhexaploid, eupolyploid or asymmetric with a ploidy level above 6x). RFLP-analysis with single-copy probes of 12 regenerates from six calli (two regenerates per callus) confirmed the assumption that the different regenerates of one callus originate from the same single cell. The analysis of selected regenerates cultivated for a period of more than 1 year demonstrated that the genome of asymmetric regenerates might change during cultivation. Received: 30 April 1998 / Accepted: 24 July 1998  相似文献   

20.
The purpose of this work was to determine if and where Angiopoietin-like genes are expressed in the mouse uterus during the implantation period of pregnancy and to determine if uterine expression of such genes is controlled by estrogen or progesterone. We found that all six known murine angiopoietin-like genes were expressed in the mouse uterus during implantation. The expression of four genes was controlled by either estrogen or progesterone. Only the levels of angiopoietin-like 4 (Angptl4) mRNA dramatically increased in implantation segments of the uterus during decidualization and was conceptus-independent. Due to this increased expression and the fact that angiopoietin-like 4 protein plays a role in lipid metabolism and angiogenesis in other tissues, only the expression of Angptl4 was further examined in the uterus and developing placenta. Angptl4 mRNA was localized to subpopulations of the endometrial stromal fibroblast and endothelial cell populations during decidualization. It was also localized to the ectoplacental cone, trophoblast giant cells and parietal endoderm of the conceptus at this time. By mid-pregnancy, Angptl4 mRNA was localized mainly to the mesometrial lymphoid aggregate region plus mesometrial endothelial cells of the uterus, as well as in various cell types of the conceptus. Additional work showed that Angptl4 expression increases in mouse endometrial stromal cells as they undergo decidualization in vitro. As in other cell types, the expression of Angptl4 in endometrial stromal cells was increased in response to an agonist of the peroxisome proliferator activated receptors. Taken together, the results of this work support the hypothesis that locally expressed Angptl4 might play a role in local uterine/placental lipid metabolism and vascular changes during implantation and thus provide a basis for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号