首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract

Type 1 protein phosphatases (PP-1) comprise a group of widely distributed enzymes that specifically dephosphorylate serine and threonine residues of certain phosphoproteins. They all contain an isoform of the same catalytic subunit, which has an extremely conserved primary structure. One of the properties of PP-1 that allows one to distinguish them from other serine/threonine protein phosphatases is their sensitivity to inhibition by two proteins, termed inhibitor 1 and inhibitor 2, or modulator. The latter protein can also form a 1:1 complex with the catalytic subunit that slowly inactivates upon incubation. This complex is reactivated in vitro by incubation with MgATP and protein kinase FA/GSK-3. In the cell the type 1 catalytic subunit is associated with noncatalytic subunits that determine the activity, the substrate specificity, and the subcellular location of the phosphatase. PP-1 plays an essential role in glycogen metabolism, calcium transport, muscle contraction, intracellular transport, protein synthesis, and cell division. The activity of PP-1 is regulated by hormones like insulin, glucagon, α- and β-adrenergic agonists, glucocorticoids, and thyroid hormones.  相似文献   

3.
Ethylene plays a crucial role in various biological processes and therefore its biosynthesis is strictly regu- lated by multiple mechanisms. Posttranslational regulation, which is pivotal in controlling ethylene biosynthesis, impacts 1-aminocyclopropane 1-carboxylate synthase (ACS) protein stability via the complex interplay of specific factors. Here, we show that the Arabidopsis thaliana protein phosphatase type 2C, ABI1, a negative regulator of abscisic acid signaling, is involved in the regulation of ethylene biosynthesis under oxidative stress conditions. We found that ABI1 interacts with ACS6 and dephosphorylates its C-terminal fragment, a target of the stress-responsive mitogen-activated protein kinase, MPK6. In addition, ABI1 controls MPK6 activity directly and by this means also affects the ACS6 phosphorylation level. Consistently with this, ozone-induced ethylene production was significantly higher in an ABI1 knockout strain (abiltd) than in wild-type plants. Importantly, an increase in stress-induced ethylene production in the abiltd mutant was compen- sated by a higher ascorbate redox state and elevated antioxidant activities. Overall, the results of this study provide evi- dence that ABI1 restricts ethylene synthesis by affecting the activity of ACS6. The ABI1 contribution to stress phenotype underpins its role in the interplay between the abscisic acid (ABA) and ethylene signaling pathways.  相似文献   

4.
During neuronal development, cells respond to a variety of environmental cues through cell surface receptors that are coupled to a signaling transduction machinery based on protein tyrosine phosphorylation and dephosphorylation. Receptor and non-receptor tyrosine kinases have received a great deal of attention; however, in the last few years, receptor (plasma membrane associated) and non-receptor protein-tyrosine phosphatases (PTPs) have also been shown to play important roles in development of the nervous system. In many cases PTPs have provocative distribution patterns or have been shown to be associated with specific cell adhesion and growth factor receptors. Additionally, altering PTP expression levels or activity impairs neuronal behavior. In this review we outline what is currently known about the role of PTPs in development, differentiation and neuronal physiology.  相似文献   

5.
Eukaryotic cells are known to have an inducible or adaptive response that enhances radioresistance after a low priming dose of radiation. This radioadaptive response seems to present a novel cellular defense mechanism. However, its molecular processing and signaling mechanisms are largely unknown. Here, we studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in the expression of radioadaptive response in cultured mouse cells. Protein immunoblot analysis using isoform-specific antibodies showed an immediate activation of PKC-alpha upon X-irradiation as indicated by a translocation from cytosol to membrane. A low priming dose caused a prolonged translocation, while a nonadaptive high dose dramatically downregulated the total PKC level. Low-dose X-rays also activated the p38 MAPK. The activation of p38 MAPK and resistance to chromosome aberration formation were blocked by SB203580, an inhibitor of p38 MAPK, and Calphostin C, an inhibitor of PKC. Furthermore, it was demonstrated that p38 MAPK was physically associated with delta1 isoform of phospholipase C (PLC-delta1), which hydrolyzed phosphatidylinositol bisphosphate into diacylglycerol, an activator of PKC, and that SB203580 also blocked the activation of PKC-alpha. These results indicate the presence of a novel mechanism for coordinated regulation of adaptive response to low-dose X-rays by a nexus of PKC-alpha/p38 MAPK/PLC-delta1 circuitry feedback signaling pathway with its breakage operated by downregulation of labile PKC-alpha at high doses or excess stimuli.  相似文献   

6.
The p21-activated kinases (PAKs) are a family of six serine/threonine kinases that act as key effectors of RHO family GTPases in mammalian cells. PAKs are subdivided into two groups: type I PAKs (PAK1, PAK2, and PAK3) and type II PAKs (PAK4, PAK5, and PAK6). Although these groups are involved in common signaling pathways, recent work indicates that the two groups have distinct modes of regulation and have both unique and common substrates. Here, we review recent insights into the molecular level details that govern regulation of type II PAK signaling. We also consider mechanisms by which signal transduction is regulated at the level of substrate specificity. Finally, we discuss the implications of these studies for clinical targeting of these kinases.  相似文献   

7.
从酿酒酵母蛋白磷酸酯酶的分类和结构特征入手,阐述了该蛋白家族中的亚家族成员丝氨酸/苏氨酸蛋白磷酸酯酶的功能和表达调控.深入研究酿酒酵母丝氨酸/苏氨酸蛋白磷酸酯酶,特别是PP2C蛋白磷酸酯酶的细胞功能及其调控,将对新药研发和疾病干预治疗提供重要基础.  相似文献   

8.
Microinjection and scrape-loading have been used to load cells in culture with soluble protein tyrosine phosphatases (FTPs). The introduction of protein tyrosine phosphatases into cells caused a rapid (within 5 minutes) decrease in tyrosine phosphorylation of major tyrosine phosphorylated substrates, including the focal adhesion kinase and paxillin. This decrease was detected both by blotting whole cell lysates with anti-phosphotyrosine antibodies and visualizing the phosphotyrosine in focal adhesions by immunofluorescence microscopy. After 30 minutes, many of the cells injected with tyrosine phosphatases revealed disruption of focal adhesions and stress fibers. To determine whether this disruption was due to the dephosphorylation of FAK and its substrates in focal adhesions, we have compared the effects of protein tyrosine phosphatase microinjection with the effects of displacing FAK from focal adhesions by microinjection of a dominant negative FAK construct. Although both procedures resulted in a marked decrease in the level of phosphotyrosine in focal adhesions, disruption of focal adhesions and stress fibers only occurred in cells loaded with exogenous protein tyrosine phosphatases. These results lead us to conclude that although tyrosine phosphorylation regulates focal adhesion and stress fiber stability, this does not involve FAK nor does it appear to involve tyrosine-phosphorylated proteins within focal adhesions. The critical tyrosine phosphorylation event is upstream of focal adhesions, a likely target being in the Rho pathway that regulates the formation of stress fibers and focal adhesions.  相似文献   

9.
Protein tyrosine phosphatases in higher plants   总被引:3,自引:0,他引:3  
  相似文献   

10.
蛋白酪氨酸磷酸酶(protein tyrosine phosphatases,PTPs)是一个结构多样的磷酸酶家族,含有高度保守的催化结构域。在植物体内,PTP主要的靶蛋白是促细胞分裂剂激活性蛋白激酶(mitogen-activated protein kinase,MAPK)。MAPK级联途径参与有机体的发育、细胞增殖、激素调节以及逆境胁迫的信号转导,PTP在MAPK级联途径中主要起负调控作用。本文就PTP的结构和功能、MAPK在植物中的作用及PTP在MAPK级联途径中的功能进行综述,并着重介绍PTP在拟南芥中的研究进展。  相似文献   

11.
The regulation of protein phosphatase 2A (PP2A) and protein threonine phosphorylation by H(2)O(2) was determined in Caco-2 cell monolayer. Incubation with H(2)O(2) (20 microM) resulted in threonine phosphorylation of a cluster of proteins at the molecular mass range of 170-250 kDa. PKC activity and plasma membrane localization of several isoforms of PKC were not affected by H(2)O(2). However, H(2)O(2) reduced 80-85% of okadaic acid-sensitive protein phosphatase activity. Immunocomplex protein phosphatase assay demonstrated that H(2)O(2) reduced the activity of PP2A, but not that of PP2C or PP1. Oxidized glutathione inhibited PP2A activity in plasma membranes prepared from Caco-2 cells and the phosphatase activity of an isolated PP2A. PP2A activity was also inhibited by N-ethylmaleimide, iodoacetamide, and p-chloromercuribenzoate. Inhibition of PP2A by oxidized glutathione was reversed by reduced glutathione. Glutathione also restored the PP2A activity in plasma membranes isolated from H(2)O(2)-treated Caco-2 cell monolayer. These results indicate that PP2A activity can be regulated by glutathionylation, and that H(2)O(2) inhibits PP2A in Caco-2 cells, which may involve glutathionylation of PP2A.  相似文献   

12.
K Engel  A Kotlyarov    M Gaestel 《The EMBO journal》1998,17(12):3363-3371
To study the intracellular localization of MAPKAP kinase 2 (MK2), which carries a putative bipartite nuclear localization signal (NLS), we constructed a green fluorescent protein-MAPKAP kinase 2 fusion protein (GFP-MK2). In transfected cells, this protein is located predominantly in the nucleus; unexpectedly, upon stress, it rapidly translocates to the cytoplasm. This translocation can be blocked by the p38 MAP kinase inhibitor SB203580, indicating its regulation by phosphorylation. Molecular mimicry of MK2 phosphorylation at T317 in GFP-MK2 led to a mutant which is located almost exclusively in the cytoplasm of the cell, whereas the mutant T317A shows no stress-induced redistribution. Since leptomycin B, which inhibits the interaction of exportin 1 with the Rev-type leucine-rich nuclear export signal (NES), blocks stress-dependent translocation of GFP-MK2, it is supposed that phosphorylation-induced export of the protein causes the translocation. We have identified the region responsible for nuclear export in MK2 which is partially overlapping with and C-terminal to the autoinhibitory motif. This region contains a cluster of hydrophobic amino acids in the characteristic spacing of a leucine-rich Rev-type NES which is necessary to direct GFP-MK2 to the cytoplasm. However, unlike the Rev-type NES, this region alone is not sufficient for nuclear export. The data obtained indicate that MK2 contains a constitutively active NLS and a stress-regulated signal for nuclear export. Keywords: nuclear export/nuclear import/protein phosphorylation/signal transduction/stress response  相似文献   

13.
Mitogen-activated kinase (MAPK) signalling pathways are involved in several important processes related to the development and virulence of Fusarium oxysporum. Reversible phosphorylation of the protein members of these pathways is a major regulator of essential biological processes. Among the phosphatases involved in dephosphorylation of MAPKs, type 2C protein phosphatases (PP2Cs) play important roles regulating many developmental strategies and stress responses in yeasts. Nevertheless, the PP2C family is poorly known in filamentous fungi. The F. oxysporum PP2C family includes seven proteins, but only Ptc1 has been studied so far. Here we show the involvement of Ptc6 in the stress response and virulence of F. oxysporum. Expression analysis revealed increased expression of ptc6 in response to cell wall and oxidative stresses. Additionally, targeted inactivation of ptc6 entailed enhanced susceptibility to cell wall stresses caused by Calcofluor White (CFW). We also demonstrate that the lack of Ptc6 deregulates both the Mpk1 phosphorylation induced by CFW and, more importantly, the Fmk1 dephosphorylation induced by pH acidification of the extracellular medium, indicating that Ptc6 is involved in the regulation of these MAPKs. Finally, we showed, for the first time, the involvement of a phosphatase in the invasive growth and virulence of F. oxysporum.  相似文献   

14.
Ceramide is a bioactive sphingolipid with many associated biological outcomes, yet there is a significant gap in our current understanding of how ceramide mediates these processes. Previously, ceramide has been shown to activate protein phosphatase (PP) 1 and 2A. While continuing this line of work, a late fraction from a Mono-Q column was consistently observed to be activated by ceramide, yet PP1 and PP2A were undetectable in this fraction. Proteomic analysis of this fraction revealed the identity of the phosphatase to be PP2Cγ/PPM1G. This was consistent with our findings that PP2Cγ 1-eluted in a high salt fraction due to its strongly acidic domain, and 2-was insensitive to okadaic acid. Further characterization was performed with PP2Cα, which showed robust activation by C(6)-ceramide. Activation was specific for the erythro conformation of ceramide and the presence of the acyl chain and hydroxyl group at the first carbon. In order to demonstrate more physiological activation of PP2Cα by ceramide, phospho-p38δ was utilized as substrate. Indeed, PP2Cα induced the dephosphorylation of p38δ only in the presence of C(16)-ceramide. Taken together, these results show that the PP2C family of phosphatases is activated by ceramide, which may have important consequences in mediating the biological effects of ceramide.  相似文献   

15.
植物激素是由植物自身代谢产生的一类从产生部位移动到作用部位发挥调控功能的微量小分子有机物质,在植物生长发育、响应环境胁迫过程中起到关键作用.苔藓植物作为早期登陆的非维管植物,处于陆生植物进化早期的阶段,具有许多不同于维管植物的形态和生理特征.大部分苔藓中普遍存在8种主要的植物激素及其衍生物(包括ABA、JA、ET、SA...  相似文献   

16.
17.
Abstract: The involvement of cell cycle-regulatory proteins in apoptosis of neuronally differentiated PC12 cells induced by the removal of nerve growth factor and serum was examined. Three major findings are presented. (1) Cdc2 kinase protein levels increased fivefold in apoptotic PC12 cells by day 3 of serum and nerve growth factor deprivation. Histone H1 kinase activity was increased significantly in p13suc1 precipitates of apoptotic PC12 cells, which was due to increased activation and/or expression of cdc2 kinase. (2) The protein levels of cyclin-dependent kinase 4, cyclin D, and proliferating cell nuclear antigen that are normally expressed in the cell cycle were increased during neuronal PC12 cell apoptosis. (3) The levels of the catalytic subunit, but not the regulatory subunit of the calcium/calmodulin-dependent protein phosphatase 2B, decreased significantly concomitant with a significant decrease in protein phosphatase 2B activity early in the apoptotic process. Protein phosphatase 2A activity decreased slightly but significantly after 3 days of serum and nerve growth factor deprivation, and no alterations in protein phosphatase 1 were observed during the apoptotic process. These data demonstrate that certain cell cycle-regulatory proteins are inappropriately expressed and that alterations in specific phosphorylation events, as indicated by the increase in histone H1 kinase activity and the decrease in protein phosphatase 2B activity, are most likely occurring during apoptosis of PC12 cells. These observations support the hypothesis that apoptosis may be due in part to a nondividing cell's uncoordinated attempt to reenter and progress through the cell cycle.  相似文献   

18.
以H2O2为代表的活性氧(reactive oxygen species,ROS)和以促细胞分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)为代表的蛋白激酶广泛存在于植物细胞并参与各种生理反应过程.生物胁迫条件下,一些MAP激酶特异性地调节氧化猝发(oxidative burst,OXB)和过敏反应(hypersensitive response,HR),水杨酸(salicylic acid,SA)诱导的MAP激酶(SA-induced protein kinase,SIPK)和ROS共同参与系统获得性抗性(systemic acquired resistance,SAR)的建立;SIPK、P38 MAPK等分别与H2O2共同调节臭氧、受伤和渗透胁迫等多种非生物胁迫生理反应.ROS和MAP激酶共同调节植物胁迫信号转导,但其机制尚需进一步的研究.  相似文献   

19.
Role of Ca2+ in Drought Stress Signaling in Wheat Seedlings   总被引:1,自引:0,他引:1  
Plants use complex signal transduction pathways to perceive and react to various biotic and/or abiotic stresses. As a consequence of this signaling, plants can modify their metabolism to adapt themselves to new conditions. One such change is the accumulation of proline in response to drought and salinity stresses. We have studied drought and salinity induced proline accumulation and the roles of Ca2+ (10 mM) and indoleacetic acid (IAA, 0.3 mM) in this response. Subjecting seedlings to both drought (6% polyethylene glycol, PEG) and salinity (150 mM NaCl) stress resulted in a dramatic increase in proline accumulation (7-fold higher than control level). However, the application of Ca2+ along with these stress factors had different effects. Unlike the salinity stress, Ca2+ prevented the drought induced proline accumulation indicating that these stress factors use distinct signaling pathways to induce similar responses. Experiments with IAA and EGTA (10 mM) supported this interpretation and suggested that Ca2+ and auxin participate in signaling mechanisms of drought-induced proline accumulation. Drought and salt stress-induced proline accumulation was compared on salt resistant (cv. Gerek 79) and salt sensitive (cv. Bezostaya) wheat varieties. Although proline level of the first was twofold lower than that of the second in control, relative proline accumulation was dramatically higher in the case of the salt resistant wheat variety under stress conditions.  相似文献   

20.
高等植物中蛋白磷酸酶2C的结构与功能   总被引:4,自引:0,他引:4  
蛋白质磷酸化/去磷酸化是生物信号级联传递的重要方式之一,主要通过生化性质互为对立的蛋白激酶和蛋白磷酸酶实现。蛋白磷酸酶2C(PP2C)是蛋白磷酸酶的一个分支,其生化性质、蛋白质组成与结构都和其他磷酸酶显著不同,但都在生物信号传递中扮演重要角色。高等植物中PP2C广泛参与脱落酸(ABA)的各种信号途径,包括ABA诱导的种子萌发/休眠、保卫细胞及离子通道调控和气孔关闭、逆境胁迫等。PP2C也多样地参与植物创伤反应、生长发育以及抗病性等各个途径。作为大多数信号途径的负调控因子,PP2C能直接与激酶结合,与其他调控蛋白结合,以及直接与DNA结合调控相关基因的表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号