首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Adaptive mutation is a generic term for processes that allow individual cells of nonproliferating cell populations to acquire advantageous mutations and thereby to overcome the strong selective pressure of proliferation-limiting environmental conditions. Prerequisites for an occurrence of adaptive mutation are that the selective conditions are nonlethal and that a restart of proliferation may be accomplished by some genetic change in principle. The importance of adaptive mutation is derived from the assumption that it may, on the one hand, result in an accelerated evolution of microorganisms and, on the other, in multicellular organisms may contribute to a breakout of somatic cells from negative growth regulation, i.e., to cancerogenesis. Most information on adaptive mutation in eukaryotes has been gained with the budding yeast Saccharomyces cerevisiae. This review focuses comprehensively on adaptive mutation in this organism and summarizes our current understanding of this issue.  相似文献   

3.
Mutations can arise in static populations of cells that are subjected to nonlethal selective pressure, a phenomenon that has been called ‘adaptive mutation’. This phenomenon has been extensively studied in FC40, a strain ofEscherichia coli that cannot metabolize lactose (Lac) but that reverts to lactose utilization (Lac+) when lactose is its sole energy and carbon source. The adaptive Lac+ mutations arise by two mutational processes: a recombination-dependent process that is highly active on the episome carrying the Lac allele, and an unknown process that affects the whole genome. Most of the Lac+ mutations are due to the first process, which also produces nonselected mutations on the F′ episome. However, about 10% of the Lac+ mutations arise in a subpopulation of cells that experience a period of transient hypermutation. Although minor contributors to any one type of mutation, the hypermutators account for nearly all cases of multiple mutations. The evolutionary implications of these results are: (i) DNA synthesis associated with recombination may be an important source of spontaneous mutation, particularly in cells that are not actively growing; (ii) the efficient mutational mechanism that occurs on the episome could result in the horizontal transfer of new alleles among species that carry and exchange conjugal plasmids; and (iii) a subpopulation of transient hypermutators could be a source of multiple mutations that would allow for rapid adaptive evolution under adverse conditions.  相似文献   

4.
Several recent reports have claimed that adaptive mutants in bacteria and yeast are induced by selective conditions. The results of these reports suggest that mutants can arise nonrandomly with respect to fitness, contrary to what has been widely accepted. In several cases that have received careful experimental reexamination, however, the detection of seemingly nonrandom mutation has been explained as an experimental artifact. In the remaining cases, there is no evidence to suggest that cells have the capacity to direct or choose which genetic variants will arise. Instead, current models propose processes by which genetic variants persist as mutations only if they enable cell growth and DNA replication. Most of these models are apparently contradicted by experimental data. One model, the hypermutable state model, has recently received limited circumstantial support. However, in this model the origin of adaptive mutants is random; the apparent nonrandomness of mutation is merely a consequence of natural selection. The critical distinction between the origin of genetic variation (mutation) and the possible consequence of that variation (selection) has been neglected by proponents of directed mutation.  相似文献   

5.

Background  

Many investigations have reported that advantageous mutations occurred more frequently under selective conditions than those under non-selective conditions. This phenomenon is referred to as adaptive mutation. Their characteristics are that adaptive mutations are directed and growth-independent. The idea of directed adaptive mutation had been objected by some reports, however, the idea of growth-independent adaptive mutation has been held till today.  相似文献   

6.
Several investigators have recently reported that significant numbers ofappropriately adapted mutants can be induced in bacterial and yeast strains by exposing stationary phase cells to specific environmental challenges. The resulting mutants are said to be both selection-induced and demonstrably non-random in origin; if this interpretation is correct, it is in direct conflict with the conventional neo-Darwinian view, which is that spontaneous mutants are truly random in origin and arise without the intervention of any overtly adaptive forces. We believe that there are alternative ways of accounting for the appearance of many (and probably all) of the additional mutants which proponents of the adaptive mutation theory claim are observed only after they applied the appropriate selective pressure. Having reviewed the available evidence, we consider that most (if not all) of the sorts of mutants which are said to have been induced following exposure of stationary-phase cells to intense selective pressure are equally likely to have been generated during the operation of certain well-known, conventional (and essentially random) cellular DNA repair processes. Evidence in support of our view can be found in the mainstream literature on the origins of spontaneous mutations. We also note that some of the molecular models which have recently been proposed to explain the production of selection-induced mutations preferentially (or even only) in genes of adaptive significance may turn out to be of considerable interest in their own right, even although the mutants whose origins they were intended to explain may turn out to have arisen in a manner which is totally independent of the conditions used for their selection.  相似文献   

7.
The appearance over many days of Lac(+) frameshift mutations in Escherichia coli strain FC40 incubated on lactose selection plates is a classic example of apparent "adaptive" mutation in an episomal gene. We show that endogenously overproduced carotenoids reduce adaptive mutation under selective conditions by a factor of around two. Carotenoids are known to scavenge singlet oxygen suggesting that the accumulation of oxidative base damage may be an integral part of the adaptive mutation phenomenon. If so, the lesion cannot be 7,8-dihydro-8-oxoguanine since adaptive mutation in FC40 is unaffected by mutM and mutY mutations. If active oxygen species such as singlet oxygen are involved in adaptive mutation then they should also induce frameshift mutations in FC40 under non-selective conditions. We show that such mutations can be induced under non-selective conditions by protoporphyrin photosensitisation and that this photodynamic induction is reduced by a factor of just over two when endogenous carotenoids are present. We argue that the involvement of oxidative damage would in no way be inconsistent with current understanding of the mechanism of adaptive mutation and the role of DNA polymerases.  相似文献   

8.
We tested if different adaptation strategies were linked to a stress gradient in phytoplankton cells. For this purpose, we studied the adaptation and acclimation of Dictyosphaerium chlorelloides (Naumann) Komárek et Perman (Chlorophyta) and Microcystis aeruginosa (Kütz.) Kütz. (Cyanobacteria) to different water samples (from extremely acid, metal‐rich water to moderate stressful conditions) of the Agrio River–Caviahue Lake system (Neuquén, Argentina). Both experimental strains were isolated from pristine, slightly alkaline waters. To distinguish between physiological acclimation and genetic adaptation (an adaptive evolution event), a modified Luria‐Delbrück fluctuation analysis was carried out with both species by using as selective agent sample waters from different points along the stress gradient. M. aeruginosa did not acclimate to any of the waters tested from different points along the stress gradient nor did D. chlorelloides to the two most acidic and metal‐rich waters. However, D. chlorelloides proliferated by rapid genetic adaptation, as the consequence of a single mutation (5.4 × 10?7 resistant mutants per cell per division) at one locus, in less extreme water and also by acclimation in the least extreme water. It is hypothesized that the stress gradient resulted in different strategies of adaptation in phytoplankton cells from nonextreme waters. Thus, very extreme conditions were lethal for both organisms, but as stressful conditions decreased, adaptation of D. chlorelloides cells was possible by the selection of resistant mutants, and in less extreme conditions, by acclimation.  相似文献   

9.
The pattern of spontaneous mutation can be inferred from the pattern of substitution in pseudogenes, which are known to be under very weak or no selective constraint. We modified an existing method (Gojobori T, et al., J Mol Evol 18:360, 1982) to infer the pattern of mutation in bacteria by using 569 pseudogenes from Mycobacterium leprae. In Gojobori et al.’s method, the pattern is inferred by using comparisons involving a pseudogene, a conspecific functional paralog, and an outgroup functional ortholog. Because pseudogenes in M. leprae are unitary, we replaced the missing paralogs by functional orthologs from M. tuberculosis. Functional orthologs from Streptomyces coelicolor served as outgroups. We compiled a database consisting of 69,378 inferred mutations. Transitional mutations were found to constitute more than 56% of all mutations. The transitional bias was mainly due to C→T and G→A, which were also the most frequent mutations on the leading strand and the only ones that were significantly more frequent than the random expectation. The least frequent mutations on the leading strand were A→T and T→A, each with a relative frequency of less than 3%. The mutation pattern was found to differ between the leading and the lagging strands. This asymmetry is thought to be the cause for the typical chirochoric structure of bacterial genomes. The physical distance of the pseudogene from the origin of replication (ori) was found to have almost no effect on the pattern of mutation. A surprising similarity was found between the mutation pattern in M. leprae and previously inferred patterns for such distant taxa as human and Drosophila. The mutation pattern on the leading strand of M. leprae was also found to share some common features with the pattern inferred for the heavy strand of the human mitochondrial genome. These findings indicate that taxon-specific factors may only play secondary roles in determining patterns of mutation. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor:Dr. Dmitri Petrov]  相似文献   

10.
For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates.  相似文献   

11.
Summary A mutation in the purB gene of E. coli K-12, isolated and partially characterized by Geiger and Speyer (1977), confers a temperature sensitive requirement for adenine and an antimutator phenotype at 30°C. Several hypotheses about the mechanism of action of this mutation, named mud for mutation defective, were tested in the present work. The mud mutation has no effect upon the induction of the SOS response, so the antimutator phenotype is unlikely to be due to repression of mutagenic repair. Mud cells are resistant to the cytotoxic and mutagenic effects of alkylating agents such as MNNG, but this resistance is not due simply to derepression of the adaptive response. DNA isolated from mud cells is not undermethylated relative to DNA from purB + cells, so the antimutator phenotype of mud cannot be due to reduced hotspot base-substitution mutation at methylated cytosine residues. Nor is there a longer lag in post-replicative DNA methylation, which indicates that there is no enhancement of mismatch repair resulting from an extended time window for strand discrimination. Measurement of nucleotide pool levels demonstrated an elevation of dCTP in mud cells and a reduction of all other nucleoside triphosphates.This work was supported in part by Public Health Service grants numbers GM15697 and CA32182  相似文献   

12.
The Saccharomyces cerevisiae cell adhesion protein a-agglutinin is composed of an anchorage subunit (Aga1p) and an adhesion subunit (Aga2p). Although functional a-agglutinin is expressed only by a cells, previous results indicated that AGA1 RNA is expressed in both a and cells after pheromone induction. Expression of the Aga2p adhesion subunit in a cells allowed a-agglutinability, indicating that a cells express the a-agglutinin anchorage subunit, although no role for Aga1p in cells has been identified. Most of the a-specific agglutination-defective mutants isolated previously were defective in AGA1; a single mutant (La199) was a candidate for an aga2 mutant. Expression of AGA2 under PGK control allowed secretion of active Aga2p from control strains but did not complement the La199 agglutination defect or allow secretion of Aga2p from La 199, suggesting that the La199 mutation might identify a new gene required for a-agglutinin function. However, the La199 agglutination defect showed tight linkage to aga2::URA3 and did not complement aga2::URA3 in a/a diploids. The aga2 gene cloned from La199 was nonfunctional and contained an ochre mutation. The inability of pPGK-AGA2 to express functional Aga2p in La199 was shown to result from an additional mutation(s) that reduces expression of plasmid-borne genes. AGA2 was mapped to the left arm of chromosome VII approximately 28 cM from the centromere.  相似文献   

13.
Escherichia coli cells are capable of complex regulatory responses to environmental conditions and stresses. In some circumstances, the response includes an increase in the mutation rate, effectively mutagenizing the genome. The classic example is the SOS response to DNA damage. Recent work indicates that other environmental stresses can also result in mutation of the genome. Modulation of mutation rate may be a more prevalent stress response than previously thought. In this review we focus on genome-wide mutation inE. coli cells subjected to a nonlethal genetic selection for reversion of alac frameshift allele. Reversion of thelac frameshift allele occurs via a novel mechanism that requires homologous recombination functions, and is enhanced by transiently diminished postsynthesis mismatch repair. A model for recombination-dependent stationary-phase mutation will be presented and its relevance for genome-wide mutation discussed.  相似文献   

14.
“Adaptive mutation” denotes a collection of processes in which cells respond to growth-limiting environments by producing compensatory mutants that grow well, apparently violating fundamental principles of evolution. In a well-studied model, starvation of stationary-phase lac Escherichia coli cells on lactose medium induces Lac+ revertants at higher frequencies than predicted by usual mutation models. These revertants carry either a compensatory frameshift mutation or a greater than 20-fold amplification of the leaky lac allele. A crucial distinction between alternative hypotheses for the mechanisms of adaptive mutation hinges on whether these amplification and frameshift mutation events are distinct, or whether amplification is a molecular intermediate, producing an intermediate cell type, in colonies on a pathway to frameshift mutation. The latter model allows the evolutionarily conservative idea of increased mutations (per cell) without increased mutation rate (by virtue of extra gene copies per cell), whereas the former requires an increase in mutation rate, potentially accelerating evolution. To resolve these models, we probed early events leading to rare adaptive mutations and report several results that show that amplification is not the precursor to frameshift mutation but rather is an independent adaptive outcome. (i) Using new high-resolution selection methods and stringent analysis of all cells in very young (micro)colonies (500–10,000 cells), we find that most mutant colonies contain no detectable lac-amplified cells, in contrast with previous reports. (ii) Analysis of nascent colonies, as young as the two-cell stage, revealed mutant Lac+ cells with no lac-amplified cells present. (iii) Stringent colony-fate experiments show that microcolonies of lac-amplified cells grow to form visible colonies of lac-amplified, not mutant, cells. (iv) Mutant cells do not overgrow lac-amplified cells in microcolonies fast enough to mask the lac-amplified cells. (v) lac-amplified cells are not SOS-induced, as was proposed to explain elevated mutation in a sequential model. (vi) Amplification, and not frameshift mutation, requires DNA polymerase I, demonstrating that mutation is separable from amplification, and also illuminating the amplification mechanism. We conclude that amplification and mutation are independent outcomes of adaptive genetic change. We suggest that the availability of alternative pathways for genetic/evolutionary adaptation and clonal expansion under stress may be exploited during processes ranging from the evolution of drug resistance to cancer progression.  相似文献   

15.
Adaptive genetic variation has been thought to originate primarily from either new mutation or standing variation. Another potential source of adaptive variation is adaptive variants from other (donor) species that are introgressed into the (recipient) species, termed adaptive introgression. Here, the various attributes of these three potential sources of adaptive variation are compared. For example, the rate of adaptive change is generally thought to be faster from standing variation, slower from mutation and potentially intermediate from adaptive introgression. Additionally, the higher initial frequency of adaptive variation from standing variation and lower initial frequency from mutation might result in a higher probability of fixation of the adaptive variants for standing variation. Adaptive variation from introgression might have higher initial frequency than new adaptive mutations but lower than that from standing variation, again making the impact of adaptive introgression variation potentially intermediate. Adaptive introgressive variants might have multiple changes within a gene and affect multiple loci, an advantage also potentially found for adaptive standing variation but not for new adaptive mutants. The processes that might produce a common variant in two taxa, convergence, trans‐species polymorphism from incomplete lineage sorting or from balancing selection and adaptive introgression, are also compared. Finally, potential examples of adaptive introgression in animals, including balancing selection for multiple alleles for major histocompatibility complex (MHC), S and csd genes, pesticide resistance in mice, black colour in wolves and white colour in coyotes, Neanderthal or Denisovan ancestry in humans, mimicry genes in Heliconius butterflies, beak traits in Darwin's finches, yellow skin in chickens and non‐native ancestry in an endangered native salamander, are examined.  相似文献   

16.
《Plant Ecology & Diversity》2013,6(3-4):487-494
Background: Flower orientation is considered an evolutionary response to pollinators and abiotic factors. Several members of the genus Cremanthodium (Asteraceae) growing in alpine habitats in the Sino–Himalayas have conspicuously nodding capitula, the function of which is not understood.

Aims: We investigated the influences of nodding capitula on floral thermal conditions, pollinator visitation rate, pollen viability and achene production in Cremanthodium campanulatum.

Results: (1) the nodding capitulum did not modify internal thermal conditions, but the elongated involucral bracts could shelter pollen from UV-B radiation; (2) water and UV-B radiation seriously reduced the viability of pollen grains; (3) capitula artificially held erect set significantly fewer achenes than nodding ones; and (4) no pollinator preference was observed between capitula that were artificially held erect and natural nodding ones.

Conclusions: This study indicated that the nodding capitulum of C. campanulatum may protect pollen from being damaged by UV-B radiation, being washed away from the anther and stigma, and enable it to avoid rain damage during the wet monsoonal period. Our results suggest that nodding capitula in C. campanulatum possibly confer a selective advantage and may be driven by non-biological agents rather than pollinator attractors.  相似文献   

17.
Pathogens, which have recently colonized a new host species or new populations of the same host, are interesting models for understanding how populations may evolve in response to novel environments. During its colonization of South America from Africa, Plasmodium falciparum, the main agent of malaria, has been exposed to new conditions in distinctive new human populations (Amerindian and populations of mixed origins) that likely exerted new selective pressures on the parasite's genome. Among the genes that might have experienced strong selective pressures in response to these environmental changes, the eba genes (erythrocyte‐binding antigens genes), which are involved in the invasion of the human red blood cells, constitute good candidates. In this study, we analysed, in South America, the polymorphism of three eba genes (eba‐140, eba‐175, eba‐181) and compared it to the polymorphism observed in African populations. The aim was to determine whether these genes faced selective pressures in South America distinct from what they experienced in Africa. Patterns of genetic variability of these genes were compared to the patterns observed at two housekeeping genes (adsl and serca) and 272 SNPs to separate adaptive effects from demographic effects. We show that, conversely to Africa, eba‐140 seemed to be under stronger diversifying selection in South America than eba‐175. In contrast, eba‐181 did not show any sign of departure from neutrality. These changes in the patterns of selection on the eba genes could be the consequence of changes in the host immune response, the host receptor polymorphisms and/or the ability of the parasite to silence or express differentially its invasion proteins.  相似文献   

18.
Selection, adaptation, and bacterial operons   总被引:6,自引:0,他引:6  
B G Hall 《Génome》1989,31(1):265-271
Bacteria are especially useful as systems to study the molecular basis of adaptive evolution. Selection for novel metabolic capabilities has allowed us to study the evolutionary potential of organisms and has shown that there are three major "strategies" for the evolution of new metabolic functions. (i) Regulatory mutations may allow a gene to be expressed under unusual conditions. If the product of that gene is already active toward a novel resource, then a regulatory mutation alone may confer a new metabolic capability. (ii) Structural gene mutations may alter the catalytic properties of enzymes so that they can act on novel substrates. These structural gene mutations may dramatically improve catalytic capabilities, and in some cases they can confer entirely new capabilities upon enzymes. In most cases both regulatory and structural gene mutations are required for the effective evolution of new metabolic functions. (iii) Operons that are normally silent, or cryptic, may be activated by either point mutations or by the action of mobile genetic elements. When activated, these operons can provide entirely new pathways for the metabolism of novel resources. Selection can also play a role in modulating the probability that a particular adaptive mutation will occur. In this paper I present evidence that a specific adaptive mutation, reversion of the metB1 mutation, occurs 60 to 80 times more frequently during prolonged selection on plates under conditions where the members of the population are not growing than it does in growing cells under nonselective conditions. This selective condition, methionine starvation, does not increase the frequency of other mutations unrelated to methionine biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Abstract

This paper studies the effect of having at least one male offspring on a sex‐linked recessive disease and the fraction of affected males due to fresh mutations. The equilibrium frequency of heterozygous females depends not only on the intensity of the reproductive compensation, but also on the time of mutational change. It has been shown that the frequency ranges from 4u without reproductive compensation to √2u or √3u with strict compensation, where u is the mutation rate from the wild type allele to lethal gene. The frequency √2u is achieved when mutation occurs in mature germ cells, whereas, √3u achieved when mutation occurs in early development of germ cells. This increased frequency of heterozygous females due to reproductive compensation reduces considerably the proportion of affected males due to fresh mutation.  相似文献   

20.
Evaluation of: Miotto O, Heiny AT, Albrecht R et al. Complete-proteome mapping of human influenza A adaptive mutations: implications for human transmissibility of zoonotic strains. PLoS ONE 5(2), e9025 (2010).

The emergence of an influenza pandemic is of great concern globally. It is, therefore, necessary to have a better understanding of the adaptation of influenza A viruses to humans. The mutation patterns affecting host tropism may provide information on the mechanisms and determinants of the host barrier. The work by Miotto et al. describes a catalog of mutations observed specifically in human influenza A viruses by analyzing almost 100,000 influenza A virus protein sequences. These sites may be important for host tropism and characteristic mutations of human influenza viruses may be required for efficient human-to-human transmission. The catalog can be used for genetic surveillance of zoonotic strains of the influenza A virus to determine their pandemic potential, as well as for basic research on the influenza A virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号