首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions.  相似文献   

2.
Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear), allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.  相似文献   

3.
4.
Wong KS  Houry WA 《Cell research》2006,16(9):742-749
Hsp90 is a specialized molecular chaperone that is capable of buffering the expression of abnormal phenotypes.Inhi-bition of Hsp90 activity results in the expression of these phenotypes that are otherwise masked.Selection of offspringfrom the crossing of affected progenies results in inheritance and enrichment of these phenotypes,which can becomeindependent of their original stimuli.The current combined evidence favours a model involving the interplay betweengenetics and epigenetics.The recent proteomics efforts to characterize the Hsp90 interaction networks provide further cluesinto the molecular mechanisms behind this complex phenomenon.This review summarizes the most recent experimentalobservations and briefly discusses the genetic and epigenetic views used in explaining the different observations.  相似文献   

5.
The distribution of fitness effects (DFEs) of new mutations across different environments quantifies the potential for adaptation in a given environment and its cost in others. So far, results regarding the cost of adaptation across environments have been mixed, and most studies have sampled random mutations across different genes. Here, we quantify systematically how costs of adaptation vary along a large stretch of protein sequence by studying the distribution of fitness effects of the same ≈2,300 amino-acid changing mutations obtained from deep mutational scanning of 119 amino acids in the middle domain of the heat shock protein Hsp90 in five environments. This region is known to be important for client binding, stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and Middle-C-terminal interdomains, and regulation of ATPase–chaperone activity. Interestingly, we find that fitness correlates well across diverse stressful environments, with the exception of one environment, diamide. Consistent with this result, we find little cost of adaptation; on average only one in seven beneficial mutations is deleterious in another environment. We identify a hotspot of beneficial mutations in a region of the protein that is located within an allosteric center. The identified protein regions that are enriched in beneficial, deleterious, and costly mutations coincide with residues that are involved in the stabilization of Hsp90 interdomains and stabilization of client-binding interfaces, or residues that are involved in ATPase–chaperone activity of Hsp90. Thus, our study yields information regarding the role and adaptive potential of a protein sequence that complements and extends known structural information.  相似文献   

6.
7.
A new method for the mathematical analysis of large metabolic networks is presented. Based on the fact that the occurrence of a metabolic reaction generally requires the existence of other reactions providing its substrates, series of metabolic networks are constructed. In each step of the corresponding expansion process those reactions are incorporated whose substrates are made available by the networks of the previous generations. The method is applied to the set of all metabolic reactions included in the KEGG database. Starting with one or more seed compounds, the expansion results in a final network whose compounds define the scope of the seed. Scopes of all metabolic compounds are calculated and it is shown that large parts of cellular metabolism can be considered as the combined scope of simple building blocks. Analyses of various expansion processes reveal crucial metabolites whose incorporation allows for the increase in network complexity. Among these metabolites are common cofactors such as NAD+, ATP, and coenzyme A. We demonstrate that the outcome of network expansion is in general very robust against elimination of single or few reactions. There exist, however, crucial reactions whose elimination results in a dramatic reduction of scope sizes. It is hypothesized that the expansion process displays characteristics of the evolution of metabolism such as the temporal order of the emergence of metabolic pathways. [Reviewing Editor : Dr. David Pollock]  相似文献   

8.
The structural basis for the coupling of ATP binding and hydrolysis to chaperone activity remains a central question in Hsp90 biology. By analogy to MutL, ATP binding to Hsp90 is thought to promote intramolecular N-terminal dimerization, yielding a molecular clamp functioning in substrate protein activation. Though observed in studies with recombinant domains, whether such quaternary states are present in native Hsp90s is unknown. In this study, native subunit interactions in GRP94, the endoplasmic reticulum Hsp90, were analyzed using chemical cross-linking in conjunction with tandem mass spectrometry. We report the identification of two distinct intermolecular interaction sites. Consistent with previous studies, one site comprises the C-terminal dimerization domain. The remaining site represents a novel intermolecular contact between the N-terminal and middle (M) domains of opposing subunits. This N+M domain interaction was present in the nucleotide-empty, ADP-, ATP-, or geldanamycin-bound states and could be selectively disrupted upon addition of synthetic geldanamycin dimers. These results identify a compact, intertwined quaternary conformation of native GRP94 and suggest that intersubunit N+M interactions are integral to the structural biology of Hsp90.  相似文献   

9.
Hsp70 and Hsp90 molecular chaperones play essential roles in protein expression and maturation, and while catalyzing protein folding they can "decide" to target mis-folded substrates for degradation. In this report, we show for the first time distinct but partially overlapping requirements for Hsp90, Hsp70, and an Hsp70 nucleotide exchange factor (NEF) at different steps during the biogenesis of a model substrate, firefly luciferase (FFLux), in yeast. By examining the inducible expression of FFLux in wild type cells and in specific yeast mutants, we find that the Fes1p NEF is required for efficient FFLux folding, whereas the Hsp70, Ssa1p, is required for both protein folding and stability, and to maintain maximal FFLux mRNA levels. In contrast, Hsp90 function was primarily necessary to express the FFLux-encoding gene from an inducible promoter. Together, these data indicate previously unknown roles for these proteins and point to the complexity with which chaperones and cochaperones function in the cell.  相似文献   

10.
The molecular chaperone Hsp90 is an essential protein in eukaryotic organisms and is highly conserved throughout all kingdoms of life. It serves as a platform for the folding and maturation of many client proteins including protein kinases and steroid hormone receptors. To fulfill this task Hsp90 performs conformational changes driven by the hydrolysis of ATP. Further, it can resort to a broad set of co-chaperones, which fit the Hsp90 machinery to the needs of specific client proteins. During the last years the number of identified co-chaperones has been consistently rising, implying that the client spectrum of Hsp90 may be much more diverse and larger than currently known. Many cofactors contain a TPR-domain for interactions at the C-terminus of Hsp90 and in many cases their functions and client sets remain to be uncovered. Hsp90 is also a putative target to interfere with cancerous and infectious diseases. Thus the knowledge on more of its cellular functions would provide also more therapeutic options for the future. In this review we compile the current knowledge on the Hsp90 ATPase mechanism, cofactor regulation and prospects of Hsp90 inhibition.  相似文献   

11.
The study of modularity is paramount for understanding trends of phenotypic evolution, and for determining the extent to which covariation patterns are conserved across taxa and levels of biological organization. However, biologists currently lack quantitative methods for statistically comparing the strength of modular signal across datasets, and a robust approach for evaluating alternative modular hypotheses for the same dataset. As a solution to these challenges, we propose an effect size measure () derived from the covariance ratio, and develop hypothesis‐testing procedures for their comparison. Computer simulations demonstrate that displays appropriate statistical properties and low levels of mis‐specification, implying that it correctly identifies modular signal, when present. By contrast, alternative methods based on likelihood (EMMLi ) and goodness of fit (MINT ) suffer from high false positive rates and high model mis‐specification rates. An empirical example in sigmodontine rodent mandibles is provided to illustrate the utility of for comparing modular hypotheses. Overall, we find that covariance ratio effect sizes are useful for comparing patterns of modular signal across datasets or for evaluating alternative modular hypotheses for the same dataset. Finally, the statistical philosophy for pairwise model comparisons using effect sizes should accommodate any future analytical developments for characterizing modular signal.  相似文献   

12.
The heat shock protein Hsp90 plays a key, but poorly understood role in the folding, assembly and activation of a large number of signal transduction molecules, in particular kinases and steroid hormone receptors. In carrying out these functions Hsp90 hydrolyses ATP as it cycles between ADP- and ATP-bound forms, and this ATPase activity is regulated by the transient association with a variety of co-chaperones. Cdc37 is one such co-chaperone protein that also has a role in client protein recognition, in that it is required for Hsp90-dependent folding and activation of a particular group of protein kinases. These include the cyclin-dependent kinases (Cdk) 4/6 and Cdk9, Raf-1, Akt and many others. Here, the biochemical details of the interaction of human Hsp90 beta and Cdc37 have been characterised. Small angle X-ray scattering (SAXS) was then used to study the solution structure of Hsp90 and its complexes with Cdc37. The results suggest a model for the interaction of Cdc37 with Hsp90, whereby a Cdc37 dimer binds the two N-terminal domain/linker regions in an Hsp90 dimer, fixing them in a single conformation that is presumably suitable for client protein recognition.  相似文献   

13.
白菜型油菜在中国的起源与进化   总被引:26,自引:0,他引:26  
以云南长角(甘蓝型油菜,B.napus)、青海牛尾梢(芥菜型油菜,B.juncea)、汕头芥蓝(B.alboglabra)和黑芥(B.nigra cy giebra)为参照品种,对不同地理来源的82份白菜型油菜(B.campestris L.)资源进行了形态学鉴定和RAPD分子标记分析。利用分子进化遗传分析软件(MEGA)构建白菜型油菜的系统发育树,以揭示白菜型油菜在我国的起源与进化。分析表明:北方小油菜(B.campestris var.oleifera)的起源早于南方油白菜(B.chinensis var.oleif-era);冬油菜(Winter type B.campestris var.oleifera)的起源早于春油菜(Spring type B.campestris var.oleifera);关中蔓菁是起源较早的北方小油菜。陕西可能是北方小油菜的起源地,后来逐渐分化出广泛种植于甘肃、青海等地的春油菜;南方油白菜可能起源于云南、贵州、四川、湖北等地。形态性状与分子标记相结合,可用于研究白菜型油菜的起源与进化。  相似文献   

14.
The molecular chaperone Hsp90 mediates the ATP-dependent activation of a large number of proteins involved in signal transduction. During this process, Hsp90 was found to associate transiently with several accessory factors, such as p23/Sba1, Hop/Sti1, and prolyl isomerases. It has been shown that ATP hydrolysis triggers conformational changes within Hsp90, which in turn are thought to mediate conformational changes in the substrate proteins, thereby causing their activation. The specific role of the partner proteins in this process is unknown. Using proteins from Saccharomyces cerevisiae, we characterized the interaction of Hsp90 with its partner protein p23/Sba1. Our results show that the nucleotide-dependent N-terminal dimerization of Hsp90 is necessary for the binding of Sba1 to Hsp90 with an affinity in the nanomolar range. Two Sba1 molecules were found to bind per Hsp90 dimer. Sba1 binding to Hsp90 resulted in a decreased ATPase activity, presumably by trapping the hydrolysis state of Hsp90ATP. Ternary complexes of Hsp90Sba1 could be formed with the prolyl isomerase Cpr6, but not with Sti1. Based on these findings, we propose a model that correlates the ordered assembly of the Hsp90 co-chaperones with distinct steps of the ATP hydrolysis reaction during the chaperone cycle.  相似文献   

15.
16.
Evolutionary consequences of thermally varying environments were studied in the ciliated protozoan Tetrahymena thermophila. Replicated lines were propagated for 60 days, a maximum of 500 generations, in stable, slowly fluctuating (red spectrum), and rapidly fluctuating (blue spectrum) temperatures. The red and blue fluctuations had a dominant period length of 15 days and two hours, respectively. The mean temperature of all time series was 25 degrees C and the fluctuating temperatures had the same minimum (10 degrees C), maximum (40 degrees C), and variance. During the experiment, population sizes and biomasses were monitored at three-day intervals. After the experiment, carrying capacity and maximum growth rate were measured at low (15 degrees C), intermediate (25 degrees C), and high (35 degrees C) temperatures for each experimental line. Physiological changes in the lines were assessed by measuring the expression of stress-induced heat shock protein Hsp90 at 25 degrees C, 35 degrees C, and 39 degrees C. Population sizes and biomasses showed no differences between stable, blue, or red temperature treatments during the experiment. Also, after the experiment, mean carrying capacities and maximum growth rates were comparable in the stable, blue, and red temperature treatments. The expression of Hsp90 was higher in lines from the blue environment than in lines from the stable environment. Lines from the red environment had an intermediate level of Hsp90 expression. This supports the hypothesis that inducible thermotolerance and expression of canalizing genes can evolve in response to rapidly varying environments. Furthermore, we found correlative evidence of benefits and disadvantages of high Hsp90 expression. Lines with high expression of Hsp90 had an increased growth rate at the highest temperature when food resources were not limiting growth. At low and intermediate temperatures the same lines had the lowest carrying capacities.  相似文献   

17.
The Hsp90 chaperone system interacts with a wide spectrum of client proteins, forming variable and dynamic multiprotein complexes that involve the intervention of cochaperone partners. Recent results suggest that the role of Hsp90 complexes is to establish interactions that suppress unwanted client activities, allow clients to be protected from degradation and respond to biochemical signals. Cryo-electron microscopy (cryoEM) provided the first key molecular picture of Hsp90 in complex with a kinase, Cdk4, and a cochaperone, Cdc37. Here, we use a combination of molecular dynamics (MD) simulations and advanced comparative analysis methods to elucidate key aspects of the functional dynamics of the complex, with different nucleotides bound at the N-terminal Domain of Hsp90. The results reveal that nucleotide-dependent structural modulations reverberate in a striking asymmetry of the dynamics of Hsp90 and identify specific patterns of long-range coordination between the nucleotide binding site, the client binding pocket, the cochaperone and the client. Our model establishes a direct atomic-resolution cross-talk between the ATP-binding site, the client region that is to be remodeled and the surfaces of the Cdc37-cochaperone.  相似文献   

18.
《Cell reports》2023,42(7):112807
  1. Download : Download high-res image (136KB)
  2. Download : Download full-size image
  相似文献   

19.
The Hsp90 molecular chaperone is required for the function of hundreds of different cellular proteins. Hsp90 and a cohort of interacting proteins called cochaperones interact with clients in an ATP-dependent cycle. Cochaperone functions include targeting clients to Hsp90, regulating Hsp90 ATPase activity, and/or promoting Hsp90 conformational changes as it progresses through the cycle. Over the last 20 years, the list of cochaperones identified in human cells has grown from the initial six identified in complex with steroid hormone receptors and protein kinases to about fifty different cochaperones found in Hsp90-client complexes. These cochaperones may be placed into three groups based on shared Hsp90 interaction domains. Available evidence indicates that cochaperones vary in client specificity, abundance, and tissue distribution. Many of the cochaperones have critical roles in regulation of cancer and neurodegeneration. A more limited set of cochaperones have cellular functions that may be limited to tissues such as muscle and testis. It is likely that a small set of cochaperones are part of the core Hsp90 machinery required for the folding of a wide range of clients. The presence of more selective cochaperones may allow greater control of Hsp90 activities across different tissues or during development.Electronic supplementary materialThe online version of this article (10.1007/s12192-020-01167-0) contains supplementary material, which is available to authorized users.  相似文献   

20.
Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical–cortical connectivity, and gyrification’s potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号