首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
KATP channels are heteromultimers of KIR6.2 and a sulfonylurea receptor, SUR, an ATP binding cassette (ABC) protein with several isoforms. KIR6.2 forms a channel pore whose spontaneous activity and ATP sensitivity are modulated by the receptor via an unknown interaction(s). Side by side comparison of single-channel kinetics and steady-state ATP inhibition of human beta-cell, SUR1/KIR6.2, versus cardiac, SUR2A/KIR6.2 channels demonstrate that the latter have a greater mean burst duration and open probability in the absence of nucleotides and approximately 4-fold higher IC50(ATP). We have used matched chimeras of SUR1 and SUR2A to show that the kinetics, which determine the maximal open probability (Pomax), and the ATP sensitivity are functionally separable and to identify the two segments of SUR responsible for these isoform differences. A region within the first five transmembrane domains specifies the interburst kinetics, whereas a C-terminal segment determines the sensitivity to inhibitory ATP. The separable effects of SUR on ATP inhibition and channel kinetics implies that the cytoplasmic C terminus of SUR either directly modulates the affinity of a weak ATP binding site on the inward rectifier or affects linkage between the binding site and the gate. This is the first identification of parts of an ABC protein that interact with an ion channel subunit to modulate the spontaneous activity and ATP sensitivity of the heteromeric channel.  相似文献   

2.
KATP channels are heteromultimers of SUR and KIR6.2. C-terminal truncation of KIR6.2 allows surface expression of the pore. KIR6.2deltaC35 channels display approximately 7-fold lower maximal open probability, approximately 35-fold reduced ATP sensitivity, reduced mean open time, a markedly increased transition rate from a burst into a long-lived closed state, and have no counterpart in vivo. SUR1 and SUR2A restore wild-type bursting, ATP sensitivity and increase channel density in the plasma membrane. The high IC50(ATP) of approximately 4 mM for KIR6.2deltaCK185Q channels results from the additive effects of SUR removal and KIR6.2 modification. The results demonstrate allosteric interaction(s) are essential for normal intrinsic activity, ATP inhibition, and trafficking of KATP channels.  相似文献   

3.
KATP channels are composed of a small inwardly rectifying K+ channel subunit, either KIR6.1 or KIR6.2, plus a sulfonylurea receptor, SUR1 or SUR2 (A or B), which belong to the ATP-binding cassette superfamily. SUR1/KIR6.2 reconstitute the neuronal/pancreatic beta-cell channel, whereas SUR2A/KIR6.2 and SUR2B/KIR6.1 (or KIR6.2) are proposed to reconstitute the cardiac and the vascular-smooth-muscle-type KATP channels, respectively. We report that potassium channel openers (KCOs) bind to and act through SURs and that binding to SUR1, SUR2A and SUR2B requires ATP. Non-hydrolysable ATP-analogues do not support binding, and Mg2+ or Mn2+ are required. Point mutations in the Walker A motifs or linker regions of both nucleotide-binding folds (NBFs) abolish or weaken [3H]P1075 binding to SUR2B, rendering reconstituted SUR2B/KIR6.2 channels insensitive towards KCOs. The C-terminus of SUR affects KCO affinity with SUR2B approximately SUR1 > SUR2A. KCOs belonging to different structural classes inhibited specific [3H]P1075 binding to SUR2B in a monophasic manner, with the exception of minoxidil sulfate, which induced a biphasic displacement. The affinities of KCO binding to SUR2B were 3.5-8-fold higher than their potencies for activation of SUR2B/KIR6.2 channels. The results establish that SURs are the KCO receptors of KATP channels and suggest that KCO binding requires a conformational change induced by ATP hydrolysis in both NBFs.  相似文献   

4.
In beta cells from the pancreas, ATP-sensitive potassium channels, or KATP channels, are composed of two subunits, SUR1 and KIR6.2, assembled in a (SUR1/KIR6.2)4 stoichiometry. The correct stoichiometry of channels at the cell surface is tightly regulated by the presence of novel endoplasmic reticulum (ER) retention signals in SUR1 and KIR6.2; incompletely assembled KATP channels fail to exit the ER/cis-Golgi compartments. In addition to these retrograde signals, we show that the C terminus of SUR1 has an anterograde signal, composed in part of a dileucine motif and downstream phenylalanine, which is required for KATP channels to exit the ER/cis-Golgi compartments and transit to the cell surface. Deletion of as few as seven amino acids, including the phenylalanine, from SUR1 markedly reduces surface expression of KATP channels. Mutations leading to truncation of the C terminus of SUR1 are one cause of a severe, recessive form of persistent hyperinsulinemic hypoglycemia of infancy. We propose that the complete loss of beta cell KATP channel activity seen in this form of hyperinsulinism is a failure of KATP channels to traffic to the plasma membrane.  相似文献   

5.
Micromolar concentrations of tolbutamide will inhibit (SUR1/K(IR)6. 2)(4) channels in pancreatic beta-cells, but not (SUR2A/K(IR)6.2)(4) channels in cardiomyocytes. Inhibition does not require Mg(2+) or nucleotides and is enhanced by intracellular nucleotides. Using chimeras between SUR1 and SUR2A, we show that transmembrane domains 12-17 (TMD12-17) are required for high-affinity tolbutamide inhibition of K(ATP) channels. Deletions demonstrate involvement of the cytoplasmic N-terminus of K(IR)6.2 in coupling sulfonylurea-binding with SUR1 to the stabilization of an interburst closed configuration of the channel. The increased efficacy of tolbutamide by nucleotides results from an impairment of their stimulatory action on SUR1 which unmasks their inhibitory effects. The mechanism of inhibition of beta-cell K(ATP) channels by sulfonylureas during treatment of non-insulin-dependent diabetes mellitus thus involves two components, drug-binding and conformational changes within SUR1 which are coupled to the pore subunit through its N-terminus and the disruption of nucleotide-dependent stimulatory effects of the regulatory subunit on the pore. These findings uncover a molecular basis for an inhibitory influence of SUR1, an ATP-binding cassette (ABC) protein, on K(IR)6.2, a ion channel subunit.  相似文献   

6.
Drain P  Geng X  Li L 《Biophysical journal》2004,86(4):2101-2112
KATP channels assemble from four regulatory SUR1 and four pore-forming Kir6.2 subunits. At the single-channel current level, ATP-dependent gating transitions between the active burst and the inactive interburst conformations underlie inhibition of the KATP channel by intracellular ATP. Previously, we identified a slow gating mutation, T171A in the Kir6.2 subunit, which dramatically reduces rates of burst to interburst transitions in Kir6.2DeltaC26 channels without SUR1 in the absence of ATP. Here, we constructed all possible mutations at position 171 in Kir6.2DeltaC26 channels without SUR1. Only four substitutions, 171A, 171F, 171H, and 171S, gave rise to functional channels, each increasing Ki,ATP for ATP inhibition by >55-fold and slowing gating to the interburst by >35-fold. Moreover, we investigated the role of individual Kir6.2 subunits in the gating by comparing burst to interburst transition rates of channels constructed from different combinations of slow 171A and fast T171 "wild-type" subunits. The relationship between gating transition rate and number of slow subunits is exponential, which excludes independent gating models where any one subunit is sufficient for inhibition gating. Rather, our results support mechanisms where four ATP sites independently can control a single gate formed by the concerted action of all four Kir6.2 subunit inner helices of the KATP channel.  相似文献   

7.
Molecular determinants of KATP channel inhibition by ATP.   总被引:7,自引:0,他引:7       下载免费PDF全文
ATP-sensitive K+ (KATP) channels are both inhibited and activated by intracellular nucleotides, such as ATP and ADP. The inhibitory effects of nucleotides are mediated via the pore-forming subunit, Kir6.2, whereas the potentiatory effects are conferred by the sulfonylurea receptor subunit, SUR. The stimulatory action of Mg-nucleotides complicates analysis of nucleotide inhibition of Kir6. 2/SUR1 channels. We therefore used a truncated isoform of Kir6.2, that expresses ATP-sensitive channels in the absence of SUR1, to explore the mechanism of nucleotide inhibition. We found that Kir6.2 is highly selective for ATP, and that both the adenine moiety and the beta-phosphate contribute to specificity. We also identified several mutations that significantly reduce ATP inhibition. These are located in two distinct regions of Kir6.2: the N-terminus preceding, and the C-terminus immediately following, the transmembrane domains. Some mutations in the C-terminus also markedly increased the channel open probability, which may account for the decrease in apparent ATP sensitivity. Other mutations did not affect the single-channel kinetics, and may reduce ATP inhibition by interfering with ATP binding and/or the link between ATP binding and pore closure. Our results also implicate the proximal C-terminus in KATP channel gating.  相似文献   

8.
Babenko AP  Vaxillaire M 《FEBS letters》2011,585(22):3555-3559
Activating mutations in different domains of the ABCC8 gene-coded sulfonylurea receptor 1 (SUR1) cause neonatal diabetes. Here we show that a diabetogenic mutation in an unexplored helix preceding the ABC core of SUR1 dramatically increases open probability of (SUR1/Kir6.2)(4) channel (KATP) by reciprocally changing rates of its transitions to and from the long-lived, inhibitory ligand-stabilized closed state. This kinetic mechanism attenuates ATP and sulfonylurea inhibition, but not Mg-nucleotide stimulation, of SUR1/Kir6.2. The results suggest a key role for L0 helix in KATP gating and together with previous findings from mutant KATP clarify why many patients with neonatal diabetes require high doses of sulfonylureas.  相似文献   

9.
Structure-function analyses of K+ channels identify a common pore architecture whose gating depends on diverse signal sensing elements. The "gatekeepers" of the long, ATP-inhibited KIR6.0 pores of KATP channels are ABC proteins, SURs, receptors for channel opening and closing drugs. Several competing models for SUR/KIR coupling exist. We show that SUR TMD0, the N-terminal bundle of five transmembrane helices, specifically associates with KIR6.2, forcing nearly silent pores to burst like native KATP channels and enhancing surface expression. Inclusion of adjacent submembrane residues of L0, the linker between TMD0 and the stimulatory nucleotide- and drug-binding ABC core, generates constitutively active channels, whereas additional cytoplasmic residues counterbalance this activation establishing a relationship between the mean open and burst times of intact pores. SUR fragments, lacking TMD0, fail to modulate KIR. TMD0 is thus the domain that anchors SUR to the KIR pore. Consistent with data on chimeric ABCC/KIRs and a modeled channel structure, we propose that interactions of TMD0-L0 with the outer helix and N terminus of KIR bidirectionally modulate gating. The results explain and predict pathologies associated with alteration of the 5' ends of clustered ABCC8 (9)/KCNJ11 (8) genes.  相似文献   

10.
ATP-sensitive potassium (KATP) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP2). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP2, SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP2 sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP2 gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation.  相似文献   

11.
SUR1 is an ATP-binding cassette (ABC) transporter with a novel function. In contrast to other ABC proteins, it serves as the regulatory subunit of an ion channel. The ATP-sensitive (KATP) channel is an octameric complex of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits, and it links cell metabolism to electrical activity in many cell types. ATPase activity at the nucleotide-binding domains of SUR results in an increase in KATP channel open probability. Conversely, ATP binding to Kir6.2 closes the channel. Metabolic regulation is achieved by the balance between these two opposing effects. Precisely how SUR1 talks to Kir6.2 remains unclear, but recent studies have identified some residues and domains that are involved in both physical and functional interactions between the two proteins. The importance of these interactions is exemplified by the fact that impaired regulation of Kir6.2 by SUR1 results in human disease, with loss-of-function SUR1 mutations causing congenital hyperinsulinism and gain-of-function SUR1 mutations leading to neonatal diabetes. This paper reviews recent data on the regulation of Kir6.2 by SUR1 and considers the molecular mechanisms by which SUR1 mutations produce disease.  相似文献   

12.
Cardiac ATP-sensitive potassium channels (KATP) are found in both the sarcoplasmic reticulum (sarcKATP) and the inner membrane of mitochondria (mitoKATP). SarcKATP are composed of a pore containing subunit Kir6.2 and a regulatory sulfonylurea receptor subunit (SUR2), but the composition of mitoKATP remains unclear. An unusual intra-exonic splice variant of SUR2 (SUR2A-55) was previously identified in mitochondria of mammalian heart and brain, and by analogy with sarcKATP we proposed SUR2A-55 as a candidate regulatory subunit of mitoKATP. Although SUR2A-55 lacks the first nucleotide binding domain (NBD) and 2 transmembrane domains (TMD), it has a hybrid TMD and retains the second NBD. It resembles a hemi-ABC transporter suggesting it could multimerize to function as a regulatory subunit. A putative mitochondrial targeting signal in the N-terminal domain of SUR2A-55 was removed by truncation and when co-expressed with Kir6.1 and Kir6.2 it targeted to the plasma membrane and yielded KATP currents. Single channel conductance, mean open time, and burst open time of SUR2A-55 based KATP was similar to the full-length SUR2A based KATP. However, the SUR2A-55 KATP were 70-fold less sensitive to block by ATP, and twice as resistant to intracellular Ca2+ inhibition compared with the SUR2A KATP, and were markedly insensitive to KATP drugs, pinacidil, diazoxide, and glybenclamide. These results suggest that the SUR2A-55 based channels would tend to be open under physiological conditions and in ischemia, and could account for cardiac and mitochondrial phenotypes protective for ischemia.  相似文献   

13.
The mechanism of adenosine triphosphate (ATP)-sensitive potassium (KATP) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders KATP channels insensitive to nucleotide inhibition and has no apparent effect on their gating. KATP channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP with an EC50 of 112 and 8 µM, respectively. This activation was largely suppressed by mutation of the Walker A lysines in the nucleotide-binding domains of SUR1: the remaining small (∼10%), slowly developing component of MgATP activation was fully inhibited by the lipid kinase inhibitor LY294002. The EC50 for activation of Kir6.2-G334D/SUR1 currents by MgADP was lower than that for MgATP, and the time course of activation was faster. The poorly hydrolyzable analogue MgATPγS also activated Kir6.2-G334D/SUR1. AMPPCP both failed to activate Kir6.2-G334D/SUR1 and to prevent its activation by MgATP. Maximal stimulatory concentrations of MgATP (10 mM) and MgADP (1 mM) exerted identical effects on the single-channel kinetics: they dramatically elevated the open probability (PO > 0.8), increased the mean open time and the mean burst duration, reduced the frequency and number of interburst closed states, and eliminated the short burst states. By comparing our results with those obtained for wild-type KATP channels, we conclude that the MgADP sensitivity of the wild-type KATP channel can be described quantitatively by a combination of inhibition at Kir6.2 (measured for wild-type channels in the absence of Mg2+) and activation via SUR1 (determined for Kir6.2-G334D/SUR1 channels). However, this is not the case for the effects of MgATP.  相似文献   

14.
Co-expression of clones encoding Kir6.2, a K+ inward rectifier, and SUR1, a sulfonylurea receptor, reconstitutes elementary features of ATP-sensitive K+ (KATP) channels. However, the precise kinetic properties of Kir6.2/SUR1 clones remain unknown. Herein, intraburst kinetics of Kir6.2/SUR1 channel activity, heterologously co-expressed in COS cells, displayed mean closed times from 0.7 ± 0.1 to 0.4 ± 0.03 msec, and from 0.4 ± 0.1 to 2.0 ± 0.2 msec, and mean open times from 1.9 ± 0.4 to 4.5 ± 0.8 msec, and from 12.1 ± 2.4 to 5.0 ± 0.2 msec between −100 and −20 mV, and +20 to +80 mV, respectively. Burst duration for Kir6.2/SUR1 activity was 17.9 ± 1.8 msec with 5.6 ± 1.5 closings per burst. Burst kinetics of the Kir6.2/SUR1 activity could be fitted by a four-state kinetic model defining transitions between one open and three closed states with forward and backward rate constants of 1905 ± 77 and 322 ± 27 sec−1 for intraburst, 61.8 ± 6.6 and 23.9 ± 5.8 sec−1 for interburst, 12.4 ± 6.0 and 13.6 ± 2.9 sec−1 for intercluster events, respectively. Intraburst kinetic properties of Kir6.2/SUR1 clones were essentially indistinguishable from pancreatic or cardiac KATP channel phenotypes, indicating that intraburst kinetics per se were insufficient to classify recombinant Kir6.2/SUR1 amongst native KATP channels. Yet, burst kinetic behavior of Kir6.2/SUR1 although similar to pancreatic, was different from that of cardiac KATP channels. Thus, expression of Kir6.2/SUR1 proteins away from the pancreatic micro-environment, confers the burst kinetic identity of pancreatic, but not cardiac KATP channels. This study reports the kinetic properties of Kir6.2/SUR1 clones which could serve in the further characterization of novel KATP channel clones. Received: 12 March 1997/Revised: 5 May 1997  相似文献   

15.
ATP-sensitive potassium (K(ATP)) channels are composed of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits. Binding of ATP to Kir6.2 leads to inhibition of channel activity. Because there are four subunits and thus four ATP-binding sites, four binding events are possible. ATP binds to both the open and closed states of the channel and produces a decrease in the mean open time, a reduction in the mean burst duration, and an increase in the frequency and duration of the interburst closed states. Here, we investigate the mechanism of interaction of ATP with the open state of the channel by analyzing the single-channel kinetics of concatenated Kir6.2 tetramers containing from zero to four mutated Kir6.2 subunits that possess an impaired ATP-binding site. We show that the ATP-dependent decrease in the mean burst duration is well described by a Monod-Wyman-Changeux model in which channel closing is produced by all four subunits acting in a single concerted step. The data are inconsistent with a Hodgkin-Huxley model (four independent steps) or a dimer model (two independent dimers). When the channel is open, ATP binds to a single ATP-binding site with a dissociation constant of 300 microM.  相似文献   

16.
KATP channels regulate insulin secretion by coupling β-cell metabolism to membrane excitability. These channels are comprised of a pore-forming Kir6.2 tetramer which is enveloped by four regulatory SUR1 subunits. ATP acts on Kir6.2 to stabilize the channel closed state while ADP (coordinated with Mg(2+)) activates channels via the SUR1 domains. Aberrations in nucleotide-binding or in coupling binding to gating can lead to hyperinsulinism or diabetes. Here, we report a case of diabetes in a 7-mo old child with compound heterozygous mutations in ABCC8 (SUR1[A30V] and SUR1[G296R]). In unison, these mutations lead to a gain of KATP channel function, which will attenuate the β-cell response to increased metabolism and will thereby decrease insulin secretion. (86)Rb(+) flux assays on COSm6 cells coexpressing the mutant subunits (to recapitulate the compound heterozygous state) show a 2-fold increase in basal rate of (86)Rb(+) efflux relative to WT channels. Experiments on excised inside-out patches also reveal a slight increase in activity, manifested as an enhancement in stimulation by MgADP in channels expressing the compound heterozygous mutations or homozygous G296R mutation. In addition, the IC 50 for ATP inhibition of homomeric A30V channels was increased ~6-fold, and was increased ~3-fold for both heteromeric A30V+WT channels or compound heterozygous (A30V +G296R) channels. Thus, each mutation makes a mechanistically distinct contribution to the channel gain-of-function that results in neonatal diabetes, and which we predict may contribute to diabetes in related carrier individuals.  相似文献   

17.
The ATP-sensitive potassium (K(ATP)) channel exhibits spontaneous bursts of rapid openings, which are separated by long closed intervals. Previous studies have shown that mutations at the internal mouth of the pore-forming (Kir6.2) subunit of this channel affect the burst duration and the long interburst closings, but do not alter the fast intraburst kinetics. In this study, we have investigated the nature of the intraburst kinetics by using recombinant Kir6.2/SUR1 K(ATP) channels heterologously expressed in Xenopus oocytes. Single-channel currents were studied in inside-out membrane patches. Mutations within the pore loop of Kir6.2 (V127T, G135F, and M137C) dramatically affected the mean open time (tau(o)) and the short closed time (tauC1) within a burst, and the number of openings per burst, but did not alter the burst duration, the interburst closed time, or the channel open probability. Thus, the V127T and M137C mutations produced longer tau(o), shorter tauC1, and fewer openings per burst, whereas the G135F mutation had the opposite effect. All three mutations also reduced the single-channel conductance: from 70 pS for the wild-type channel to 62 pS (G135F), 50 pS (M137C), and 38 pS (V127T). These results are consistent with the idea that the K(ATP) channel possesses a gate that governs the intraburst kinetics, which lies close to the selectivity filter. This gate appears to be able to operate independently of that which regulates the long interburst closings.  相似文献   

18.
ATP-sensitive potassium (KATP) channels couple the metabolic status of the cell to its membrane potential to regulate a number of cell actions, including secretion (neurons and neuroendocrine cells) and muscle contractility (skeletal, cardiac, and vascular smooth muscle). KATP channels consist of regulatory sulfonylurea receptors (SUR) and pore-forming (Kir6.X) subunits. We recently reported (Pasyk, E. A., Kang, Y., Huang, X., Cui, N., Sheu, L., and Gaisano, H. Y. (2004) J. Biol. Chem. 279, 4234-4240) that syntaxin-1A (Syn-1A), known to mediate exocytotic fusion, was capable of binding the nucleotide binding folds (NBF1 and C-terminal NBF2) of SUR1 to inhibit the KATP channels in insulin-secreting pancreatic islet beta cells. This prompted us to examine whether Syn-1A might modulate cardiac SUR2A/KATP channels. Here, we show that Syn-1A is present in the plasma membrane of rat cardiac myocytes and binds the SUR2A protein (of rat brain, heart, and human embryonic kidney 293 cells expressing SUR2A/Kir6. 2) at its NBF1 and NBF2 domains to decrease KATP channel activation. Unlike islet beta cells, in which Syn-1A inhibition of the channel activity was apparently mediated only via NBF1 and not NBF2 of SUR1, both exogenous recombinant NBF1 and NBF2 of SUR2A were found to abolish the inhibitory actions of Syn-1A on K(ATP) channels in rat cardiac myocytes and HEK293 cells expressing SUR2A/Kir6.2. Together with our recent report, this study suggests that Syn-1A binds both NBFs of SUR1 and SUR2A but appears to exhibit distinct interactions with NBF2 of these SUR proteins in modulating the KATP channels in islet beta cells and cardiac myocytes.  相似文献   

19.
ATP-sensitive K+ (KATP) channels are unique metabolic sensors formed by association of Kir6.2, an inwardly rectifying K+ channel, and the sulfonylurea receptor SUR, an ATP binding cassette protein. We identified an ATPase activity in immunoprecipitates of cardiac KATP channels and in purified fusion proteins containing nucleotide binding domains NBD1 and NBD2 of the cardiac SUR2A isoform. NBD2 hydrolyzed ATP with a twofold higher rate compared to NBD1. The ATPase required Mg2+ and was insensitive to ouabain, oligomycin, thapsigargin, or levamisole. K1348A and D1469N mutations in NBD2 reduced ATPase activity and produced channels with increased sensitivity to ATP. KATP channel openers, which bind to SUR, promoted ATPase activity in purified sarcolemma. At higher concentrations, openers reduced ATPase activity, possibly through stabilization of MgADP at the channel site. K1348A and D1469N mutations attenuated the effect of openers on KATP channel activity. Opener-induced channel activation was also inhibited by the creatine kinase/creatine phosphate system that removes ADP from the channel complex. Thus, the KATP channel complex functions not only as a K+ conductance, but also as an enzyme regulating nucleotide-dependent channel gating through an intrinsic ATPase activity of the SUR subunit. Modulation of the channel ATPase activity and/or scavenging the product of the ATPase reaction provide novel means to regulate cellular functions associated with KATP channel opening.  相似文献   

20.
Diadenosine tetraphosphate (Ap4A) has been recently discovered in the pancreatic cells where targets ATP-sensitive K+ (KATP) channels, depolarizes the cell membrane and induces insulin secretion. However, whether Ap4A inhibit pancreatic KATP channels by targeting protein channel complex itself was unknown. Therefore, we coexpressed pancreatic KATP channel subunits, Kir6.2 and SUR1, in COS-7 cells and examined the effect of Ap4A on the single channel behavior using the inside-out configuration of the patch-clamp technique. Ap4A inhibited channel opening in a concentration-dependent manner. Analysis of single channels demonstrated that Ap4A did not change intraburst kinetic behavior of KATP channels, but rather decreased burst duration and increased between-burst duration. It is concluded that Ap4A antagonizes KATP channel opening by targeting channel subunits themselves and by keeping channels longer in closed interburst states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号