首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron scavenging by Neisseria gonorrhoeae is accomplished by the expression of receptors that are specific for host iron-binding proteins, such as transferrin and lactoferrin. Efficient transferrin-iron acquisition is dependent on the combined action of two proteins, designated TbpA and TbpB. TbpA is a TonB-dependent outer membrane receptor, whereas TbpB is lipid modified and serves to increase the efficiency of transferrin-iron uptake. Both proteins, together or separately, can be isolated from the gonococcal outer membrane by using affinity chromatography techniques. In the present study, we identified an additional protein in transferrin-affinity preparations, which had an apparent molecular mass of 45 kDa. The ability to copurify this protein by transferrin affinity was dependent upon the presence of TbpA and not TbpB. The amino-terminal sequence of the 45-kDa protein was identical to the amino terminus of gonococcal TonB, indicating that TbpA stably interacted with TonB, without the addition of chemical cross-linkers. Using immunoprecipitation, we could recover TbpA-TonB complexes without the addition of transferrin, suggesting that ligand binding was not a necessary prerequisite for TonB interaction. In contrast, a characterized TonB box mutant of TbpA did not facilitate interaction between these two proteins such that complexes could be isolated. We generated an in-frame deletion of gonococcal TonB, which removed 35 amino acids, including a Neisseria-specific, glycine-rich domain. This mutant protein, like the parental TonB, energized TbpA to enable growth on transferrin. Consistent with the functionality of this deletion derivative, TbpA-TonB complexes could be recovered from this strain. The results of the present study thus begin to define the requirements for a functional interaction between gonococcal TbpA and TonB.  相似文献   

2.
Gram-negative bacterial pathogens belonging to the Pasteurellaceae, Moraxellaceae, and Neisseriaceae families rely on an iron acquisition system that acquires iron directly from host transferrin (Tf). The process is mediated by a surface receptor composed of transferrin-binding proteins A and B (TbpA and TbpB). TbpA is an integral outer membrane protein that functions as a gated channel for the passage of iron into the periplasm. TbpB is a surface-exposed lipoprotein that facilitates the iron uptake process. In this study, we demonstrate that the region encompassing amino acids 7-40 of Actinobacillus pleuropneumoniae TbpB is required for forming a complex with TbpA and that the formation of the complex requires the presence of porcine Tf. These results are consistent with a model in which TbpB is responsible for the initial capture of iron-loaded Tf and subsequently interacts with TbpA through the anchor peptide. We propose that TonB binding to TbpA initiates the formation of the TbpB-TbpA complex and transfer of Tf to TbpA.  相似文献   

3.
The transferrin iron acquisition system of Neisseria gonorrhoeae consists of two dissimilar transferrin binding proteins (Tbp) A and B. TbpA is a TonB dependent transporter while TbpB is a lipoprotein that makes iron acquisition from transferrin (Tf) more efficient. In an attempt to further define the individual roles of these receptors in the process of Tf-iron acquisition, the kinetics of the receptor proteins in regards to ligand association and dissociation were evaluated. Tf association with TbpB was rapid as compared to TbpA. Tf dissociation from the wild-type receptor occurred in a biphasic manner; an initial rapid release was followed by a slower dissociation over time. Both TbpA and TbpB demonstrated a two-phase release pattern; however, TbpA required both TonB and TbpB for efficient Tf dissociation from the cell surface. The roles of TbpA and TbpB in Tf dissociation were further examined, utilizing previously created HA fusion proteins. Using a Tf-utilization deficient TbpA-HA mutant, we concluded that the slower rate of ligand dissociation demonstrated by the wild-type transporter was a function of successful iron internalization. Insertion into the C-terminus of TbpB decreased the rate of Tf dissociation, while insertion into the N-terminus had no effect on this process. From these studies, we propose that TbpA and TbpB function synergistically during the process of Tf iron acquisition and that TbpB makes the process of Tf-iron acquisition more efficient at least in part by affecting association and dissociation of Tf from the cell surface.  相似文献   

4.
Haemophilus parasuis is the causative agent of Gl?sser's disease, which is responsible for considerable economic losses in the pig-rearing industry. The aim of the study reported here was the identification, sequencing and molecular characterization of the TonB region that includes tonB, exbBD, and tbpBA genes in H. parasuis. In addition, two fusion proteins were generated. One of them (pGEX-6P-1-GST-TbpB) contained the first 501 amino acids of H. parasuis TbpB protein, while the second (pBAD-Thio-TbpB-V5-His) included the first 102 amino acids of H. parasuis TbpB N-terminus domain. A panel of 14 hybridomas secreting monoclonal antibodies was raised against the two recombinant TbpB fusion proteins. Furthermore, to assess whether the expression of the H. parasuis ExbB, TbpB, and TbpA proteins was upregulated under conditions of restricted availability of iron, a rabbit polyclonal antibody against H. parasuis TbpB-His fusion protein was produced. A rabbit polyclonal antibody against serotype 7 of Actinobacillus pleuropneumoniae ExbB and TbpA proteins was also used for the detection of the homologous proteins in H. parasuis. Overall, the data indicate that H. parasuis, like other members of the Pasteurellaceae family, possesses the genetic elements of the TonB region for iron acquisition and the transferrin-binding proteins encoded under this region are upregulated under restricted iron availability.  相似文献   

5.
The lbpA gene of Neisseria meningitidis encodes an outer membrane lactoferrin-binding protein and shows homology to the transferrin-binding protein, TbpA. Previously, we have detected part of an open reading frame upstream of lbpA . The putative product of this open reading frame, tentatively designated lbpB showed homology to the transferrin-binding protein TbpB, suggesting that the lactoferrrin receptor, like the transferrin receptor, consists of two proteins. The complete nucleotide sequence of lbpB was determined. The gene encodes a 77.5 kDa protein, probably a lipoprotein, with homology, 33% identity to the TbpB of N . meningitidis . A unique feature of LbpB is the presence of two stretches of negatively charged residues, which might be involved in lactoferrin binding. Antisera were raised against synthetic peptides corresponding to the C-terminal part of the putative protein and used to demonstrate that the gene is indeed expressed. Consistent with the presence of a putative Fur binding site upstream of the lbpB gene, expression of both LbpA and LbpB was proved to be iron regulated in Western blot experiments. The LbpB protein appeared to be less stable than TbpB in SDS-containing sample buffer. Isogenic mutants lacking either LbpA or LbpB exhibited a reduced ability to bind lactoferrin. In contrast to the lbpB mutant, the lbpA mutant was completely unable to use lactoferrin as a sole source of iron.  相似文献   

6.
A dynamic model of the meningococcal transferrin receptor.   总被引:7,自引:0,他引:7  
Iron is an essential nutrient for all organisms and consequently, the ability to bind transferrin and sequester iron from his source constitutes a distinct advantage to a blood-borne bacterial pathogen. Levels of free iron are strictly limited in human serum, largely through the action of the iron-binding protein transferrin. The acquisition of trasferrin-iron is coincident with pathogenicity among Neisseria species and a limited number of other pathogens of human and veterinary significance. In Neisseria meningitidis, transferrin binding relies on two co-expressed, outer membrane proteins distinct in aspects of both structure and function. These proteins are independently and simultaneously capable of binding human transferrin and both are required for the optimal uptake of iron from this source. It has been established that transferrin-binding proteins (designated TbpA and TbpB) form a discrete, specific complex which may be composed of a transmembrane species (composed of the TbpA dimer) associated with a single surface-exposed lipoprotein (TbpB). This more exposed protein is capable of selectively binding iron-saturated transferrin and the receptor complex has ligand-binding properties which are distinct from either of its components. Previous in vivo analyses of N. gonorrhoeae, which utilizes a closely related transferrin-iron uptake system, indicated that this receptor exists in several conformations influenced in part by the presence (or absence) of transferrin.Here we propose a dynamic model of the meningococcal transferrin receptor which is fully consistent with the current data concerning this subject. We suggest that TbpB serves as the initial binding site for iron-saturated transferrin and brings this ligand close to the associated transmembrane dimer, enabling additional binding events and orientating transferrin over the dual TbpA pores. The antagonistic association of these receptor proteins with a single ligand molecule may also induce conformational change in transferrin, thereby favouring the release of iron. As, in vivo, transferrin may have iron in one or both lobes, this dynamic molecular arrangement would enable iron uptake from either iron-binding site. In addition, the predicted molecular dimensions of the putative TbpA dimer and hTf are fully consistent with these proposals. Given the diverse data used in the formulation of this model and the consistent characteristics of transferrin binding among several significant Gram-negative pathogens, we speculate that such receptor-ligand interactions may be, at least in part, conserved between species. Consequently, this model may be applicable to bacteria other than N. meningitidis.  相似文献   

7.
The transferrin receptor of Neisseria meningitidis is composed of the transmembrane protein TbpA and the outer membrane protein TbpB. Both receptor proteins have the capacity to independently bind their ligand human transferrin (htf). To elucidate the specific role of these proteins in receptor function, isothermal titration calorimetry was used to study the interaction between purified TbpA, TbpB or the entire receptor (TbpA + TbpB) with holo- and apo-htf. The entire receptor was shown to contain a single high affinity htf-binding site on TbpA and approximately two lower affinity binding sites on TbpB. The binding sites appear to be independent. Purified TbpA was shown to have strong ligand preference for apo-htf, whereas TbpA in the receptor complex with TbpB preferentially binds the holo form of htf. The orientation of the ligand specificity of TbpA toward holo-htf is proposed to be the physiological function of TbpB. Furthermore, the thermodynamic mode of htf binding by TbpB of isotypes I and II was shown to be different. A protocol for the generation of active, histidine-tagged TbpB as well as its individual N- and C-terminal domains is presented. Both domains are shown to strongly interact with each other, and isothermal titration calorimetry and circular dichroism experiments provide clear evidence for this interaction causing conformational changes. The N-terminal domain of TbpB was shown to be the site of htf binding, whereas the C-terminal domain is not involved in binding. Furthermore, the interactions between TbpA and the different domains of TbpB have been demonstrated.  相似文献   

8.
Neisseria gonorrhoeae is capable of iron utilization from human transferrin in a receptor-mediated event. Transferrin-binding protein 1 (Tbp1) and Tbp2 have been implicated in transferrin receptor function, but their specific roles in transferrin binding and transferrin iron utilization have not yet been defined. We utilized specific gonococcal mutants lacking Tbp1 or Tbp2 to assess the relative transferrin-binding properties of each protein independently of the other. The apparent affinities of the wild-type transferrin receptor and of Tbp1 and Tbp2 individually were much higher than previously estimated for the gonococcal receptor and similar to the estimates for the mammalian transferrin receptor. The binding parameters of both of the mutants were distinct from those of the parent, which expressed two transferrin-binding sites. Tbp2 discriminated between ferrated transferrin and apotransferrin, while Tbp1 did not. Results of transferrin-binding affinity purification, and protease accessibility experiments were consistent with the hypothesis that Tbp1 and Tbp2 interact in the wild-type strain, although both proteins were capable of binding to transferrin independently when separated in the mutants. The presence of Tbp1 partially protected Tbp2 from trypsin proteolysis, and Tbp2 also protected Tbp1 from trypsin exposure. Addition of transferrin to wild-type but not mutant cells protected Tbp1 from trypsin but increased the trypsin susceptibility of Tbp2. These observations indicate that Tbp1 and Tbp2 function together in the wild-type strain to evoke binding conformations that are distinct from those expressed by the mutants lacking either protein.  相似文献   

9.
The ability to acquire iron directly from host Tf (transferrin) is an adaptation common to important bacterial pathogens belonging to the Pasteurellaceae, Moraxellaceae and Neisseriaceae families. A surface receptor comprising an integral outer membrane protein, TbpA (Tf-binding protein A), and a surface-exposed lipoprotein, TbpB (Tf-binding protein B), mediates the iron acquisition process. TbpB is thought to extend from the cell surface for capture of Tf to initiate the process and deliver Tf to TbpA. TbpA functions as a gated channel for the passage of iron into the periplasm. In the present study we have mapped the effect of TbpA from Actinobacillus pleuropneumoniae on pTf (porcine Tf) using H/DX-MS (hydrogen/deuterium exchange coupled to MS) and compare it with a previously determined binding site for TbpB. The proposed TbpA footprint is adjacent to and potentially overlapping the TbpB-binding site, and induces a structural instability in the TbpB site. This suggests that simultaneous binding to pTf by both receptors would be hindered. We demonstrate that a recombinant TbpB lacking a portion of its anchor peptide is unable to form a stable ternary TbpA-pTf-TbpB complex. This truncated TbpB does not bind to a preformed Tf-TbpA complex, and TbpA removes pTf from a preformed Tf-TbpB complex. Thus the results of the present study support a model whereby TbpB 'hands-off' pTf to TbpA, which completes the iron removal and transport process.  相似文献   

10.
Iron, an essential nutrient for most microorganisms, is sequestered by the host to decrease the concentration of iron available to bacterial pathogens. Neisseria gonorrhoeae , the causative agent of gonorrhoea, can acquire iron by direct interaction with human iron-binding proteins, including the serum glycoprotein, transferrin. Iron internalization from host transferrin requires the expression of a bacterial receptor, which specifically recognizes the human form of transferrin. Two gonococcal transferrin-binding proteins have been implicated in transferrin receptor function, TbpA and TbpB. We constructed a gonococcal transferrin receptor mutant without the introduction of additional antibiotic resistance markers and tested its ability to cause experimental urethritis in human male volunteers. The transferrin receptor mutant was incapable of initiating urethritis, although the same inoculum size of the wild-type parent strain, FA1090, causes urethritis in >90% of inoculated volunteers. To our knowledge, this is the first experimental demonstration that a bacterial iron acquisition system is an essential virulence factor for human infection.  相似文献   

11.
Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens   总被引:40,自引:5,他引:35  
The mechanism of iron utilization from transferrin has been most extensively characterized in the pathogenic Neisseria species and Haemophilus species. Two transferrin-binding proteins, Tbp1 and Tbp2, have been identified in these pathogens and are thought to be components of the transferrin receptor. Tbp1 appears to be an integral, TonB-dependent outer membrane protein while Tbp2, a lipoprotein, may be peripherally associated with the outer membrane. The relative contribution of each of these proteins to transferrin binding and utilization is discussed and a model of iron uptake from transferrin is presented. Sequence comparisons of the genes encoding neisserial transferrin-binding proteins suggest that they are probably under positive selection for variation and may have resulted from inter-species genetic exchange.  相似文献   

12.
Neisseria gonorrhoeae is an obligate pathogen that hijacks iron from the human iron transport protein, holo-transferrin (Fe(2)-Tf), by expressing TonB-dependent outer membrane receptor proteins, TbpA and TbpB. Homologous to other TonB-dependent outer membrane transporters, TbpA is thought to consist of a β-barrel with an N-terminal plug domain. Previous reports by our laboratories show that the sequence EIEYE in the plug domain is highly conserved among various bacterial species that express TbpA and plays a crucial role in iron utilization for gonococci. We hypothesize that this highly conserved EIEYE sequence in the TbpA plug, rich in hard oxygen donor groups, binds with Fe(3+) through the transport process across the outer membrane through the β-barrel. Sequestration of Fe(3+) by the TbpA-plug supports the paradigm that the ferric iron must always remain chelated and controlled throughout the transport process. In order to test this hypothesis here we describe the ability of both the recombinant wild-type plug, and three small peptides that encompass the sequence EIEYE of the plug, to bind Fe(3+). This is the first report of the expression/isolation of the recombinant wild-type TbpA plug. Although CD and SUPREX spectroscopies suggest that a non-native structure is observed for the recombinant plug, fluorescence quenching titrations indicate that the wild-type recombinant TbpA plug binds Fe (3+) with a conditional log K(d) = 7 at pH 7.5, with no evidence of binding at pH 6.3. A recombinant TbpA plug with mutated sequence (NEIEYEN → NEIAAAN) shows no evidence of Fe(3+) binding under our experimental set up. Interestingly, in silico modeling with the wild-type plug also predicts a flexible loop structure for the EIEYE sequence under native conditions which once again supports the Fe(3+) binding hypothesis. These in vitro observations are consistent with the hypothesis that the EIEYE sequence in the wild-type TbpA plug binds Fe(3+) during the outer membrane transport process in vivo.  相似文献   

13.
Transferrin-binding protein B (TbpB) is one component of a bipartite receptor in several gram-negative bacterial species that binds host transferrin and mediates the uptake of iron for growth. Transferrin and TbpB are both bilobed proteins, and the interaction between these proteins seems to involve similar lobe-lobe interactions. Synthetic overlapping peptide libraries representing the N lobe of TbpB from Moraxella catarrhalis were prepared and probed with labeled human transferrin. Transferrin-binding peptides were localized to six different regions of the TbpB N lobe, and reciprocal experiments identified six different regions of the C lobe of transferrin that bound TbpB. Truncations of the N lobe of TbpB that sequentially removed each transferrin-binding determinant were used to probe an overlapping peptide library of the C lobe of human transferrin. The removal of each TbpB N-lobe transferrin-binding determinant resulted in a loss of reactivity with peptides from the synthetic peptide library representing the C lobe of transferrin. Thus, individual peptide-peptide interactions between ligand and receptor were identified. A structural model of human transferrin was used to map surface regions capable of binding to TbpB.  相似文献   

14.
The pathogenic Neisseria species are capable of utilizing transferrin as their sole source of iron. A neisserial transferrin receptor has been identified and its characteristics defined; however, the biochemical identities of proteins which are required for transferrin receptor function have not yet been determined. We identified two iron-repressible transferrin-binding proteins in Neisseria gonorrhoeae, TBP1 and TBP2. Two approaches were taken to clone genes required for gonococcal transferrin receptor function. First, polyclonal antiserum raised against TBP1 was used to identify clones expressing TBP1 epitopes. Second, a wild-type gene copy was cloned that repaired the defect in a transferrin receptor function (trf) mutant. The clones obtained by these two approaches were shown to overlap by DNA sequencing. Transposon mutagenesis of both clones and recombination of mutagenized fragments into the gonococcal chromosome generated mutants that showed reduced binding of transferrin to whole cells and that were incapable of growth on transferrin. No TBP1 was produced in these mutants, but TBP2 expression was normal. The DNA sequence of the gene encoding gonococcal TBP1 (tbpA) predicted a protein sequence homologous to the Escherichia coli and Pseudomonas putida TonB-dependent outer membrane receptors. Thus, both the function and the predicted protein sequence of TBP1 were consistent with this protein serving as a transferrin receptor.  相似文献   

15.
Neisseria gonorrhoeae has evolved a repertoire of iron acquisition systems that facilitate essential iron uptake in the human host. Acquisition of iron requires both the energy-harnessing cytoplasmic membrane protein, TonB, as well as specific outer membrane TonB-dependent transporters (TdTs.) Survival within host epithelial cells is important to the pathogenesis of gonococcal disease and may contribute to the persistence of infection. However, the mechanisms by which gonococci acquire iron within this intracellular niche are not currently understood. In this study, we investigated the survival of gonococcal strain FA1090 within ME180 human cervical epithelial cells with respect to high affinity iron acquisition. Intracellular survival was dependent upon iron supplied by the host cell. TonB was expressed in the host cell environment and this protein was critical to gonococcal intracellular survival. Furthermore, expression of the characterized outer membrane transporters TbpA, FetA and LbpA and putative transporters TdfG, TdfH and TdfJ were not necessary for intracellular survival. Conversely, intracellular survival was dependent on expression of the putative transporter, TdfF. Expression of TdfF was detected in the presence of epithelial cell culture media containing fetal bovine serum. Expression was further modulated by iron availability. To our knowledge, this study is the first to demonstrate the specific requirement for a single iron transporter in the survival of a bacterial pathogen within host epithelial cells.  相似文献   

16.
Analysis of bovine respiratory isolates of Pasteurella multocida demonstrated that six of nine strains tested were capable of growth dependent upon bovine transferrin and of specifically binding ruminant transferrins. A single 82-kDa protein was affinity isolated from the P. multocida strains with immobilized bovine transferrin. In contrast to what has been observed in other species, binding of this protein to immobilized transferrin was specifically blocked by the N-lobe subfragment of bovine transferrin. A single gene encoding the 82-kDa protein was flanked by a leucyl-tRNA synthetase gene and an IS1060 element, in contrast to other species where genes encoding the two receptor proteins (TbpB and TbpA) are found in an operonic arrangement. A similar gene arrangement was observed in all of the receptor-positive strains, in spite of the observation that they belonged to different genomic groups. Analysis of the deduced amino acid sequence of the receptor protein indicated that it is a member of the TonB-dependent outer membrane receptor family, and although it is related to transferrin and lactoferrin receptor proteins (TbpAs and LbpAs) from other species, it differs substantially from other members of this group. Amino acid alignments suggest that the reduced size (20 kDa smaller) of the P. multocida TbpA is primarily due to the absence of larger predicted external loops. Collectively these results suggest that P. multocida has a single, novel receptor protein (TbpA) that is capable of efficiently mediating iron acquisition from bovine transferrin without the involvement of a second receptor protein (TbpB).  相似文献   

17.
Gram-negative porcine pathogens from the Pasteurellaceae family possess a surface receptor complex capable of acquiring iron from porcine transferrin (pTf). This receptor consists of transferrin-binding protein A (TbpA), a transmembrane iron transporter, and TbpB, a surface-exposed lipoprotein. Questions remain as to how the receptor complex engages pTf in such a way that iron is positioned for release, and whether divergent strains present distinct recognition sites on Tf. In this study, the TbpB-pTf interface was mapped using a combination of mass shift analysis and molecular docking simulations, localizing binding uniquely to the pTf C lobe for multiple divergent strains of Actinobacillus plueropneumoniae and suis. The interface was further characterized and validated with site-directed mutagenesis. Although targeting a common lobe, variants differ in preference for the two sublobes comprising the iron coordination site. Sublobes C1 and C2 participate in high affinity binding, but sublobe C1 contributes in a minor fashion to the overall affinity. Further, the TbpB-pTf complex does not release iron independent of other mediators, based on competitive iron binding studies. Together, our findings support a model whereby TbpB efficiently captures and presents iron-loaded pTf to other elements of the uptake pathway, even under low iron conditions.  相似文献   

18.
Transferrin binding protein A (TbpA) is a TonB-dependent outer membrane protein expressed by pathogenic bacteria for iron acquisition from human transferrin. The N-terminal 160 residues (plug domain) of TbpA were overexpressed in both the periplasm and cytoplasm of Escherichia coli. We found this domain to be soluble and monodisperse in solution, exhibiting secondary structure elements found in plug domains of structurally characterized TonB-dependent transporters. Although the TbpA plug domain is apparently correctly folded, we were not able to observe an interaction with human transferrin by isothermal titration calorimetry or nitrocellulose binding assays. These experiments suggest that the plug domain may fold independently of the beta-barrel, but extracellular loops of the beta-barrel are required for ligand binding.  相似文献   

19.
In gram-negative organisms, high-affinity transport of iron substrates requires energy transduction to specific outer membrane receptors by the TonB-ExbB-ExbD complex. Vibrio cholerae encodes two TonB proteins, one of which, TonB1, recognizes only a subset of V. cholerae TonB-dependent receptors and does not facilitate transport through Escherichia coli receptors. To investigate the receptor specificity exhibited by V. cholerae TonB1, chimeras were created between V. cholerae TonB1 and E. coli TonB. The activities of the chimeric TonB proteins in iron utilization assays demonstrated that the C-terminal one-third of either TonB confers the receptor specificities associated with the full-length TonB. Single-amino-acid substitutions near the C terminus of V. cholerae TonB1 were identified that allowed TonB1 to recognize E. coli receptors and at least one V. cholerae TonB2-dependent receptor. This indicates that the very C-terminal end of V. cholerae TonB1 determines receptor specificity. The regions of the TonB-dependent receptors involved in specificity for a particular TonB protein were investigated in experiments involving domain switching between V. cholerae and E. coli receptors exhibiting different TonB specificities. Switching the conserved TonB box heptapeptides at the N termini of these receptors did not alter their TonB specificities. However, replacing the amino acid immediately preceding the TonB box in E. coli receptors with an aromatic residue allowed these receptors to use V. cholerae TonB1. Further, site-directed mutagenesis of the TonB box -1 residue in a V. cholerae TonB2-dependent receptor demonstrated that a large hydrophobic amino acid in this position promotes recognition of V. cholerae TonB1. These data suggest that the TonB box -1 position controls productive interactions with V. cholerae TonB1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号