首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antibacterial peptides were isolated from human peripheral granulocytes of a healthy donor who had been treated with granulocyte-colony stimulating factor (G-CSF) and cortisol. Peptides were solubilized in acidified chloroform/methanol, and partitioned in chloroform/methanol/water. Water- soluble polypeptides were separated by cation-exchange and reversed-phase chromatography. Several previously characterized antibacterial polypeptides were identified; defensins 1-3, defensin 4, lysozyme, eosinophil cationic protein, and calgranulin A. In addition, several histone fragments were isolated and exhibited activity against the Gram- positive bacterium Bacillus megaterium strain Bm11. These fragments included two C-terminal fragments of histone H1A, three C-terminal fragments of histone H1D, one fragment of histone H1B, and two fragments of histone H4. The molecular masses of both histone H1A fragments, as determined by electrospray (ES) MS, were 270 Da higher than those calculated from their amino acid sequences. The two histone H1A fragments corresponded to Lys152-Lys222 (7527 +/- 1 Da) and Lys167-Lys222 (6023 +/- 1 Da). Tandem MS (MS/MS) of the 7.5 kDa and 6.0 kDa fragments indicated that the post-translational modification is on Lys222, the epsilon-amino group of which was conjugated with the alpha-carboxyl group of the tripeptide Arg-Gly-Gly. This finding was substantiated by digestion of the 7.5-kDa polypeptide with trypsin and analysis of the resulting peptides by ES MS and MS/MS. The tripeptide Arg-Gly-Gly corresponded uniquely to the three C-terminal residues of ubiquitin, demonstrating the presence of ubiquitinated histone H1A.  相似文献   

2.
J A D'Anna  R A Tobey 《Biochemistry》1984,23(21):5024-5029
We have measured changes in histone H1 content and changes in chromatin structure of Chinese hamster (line CHO) cells blocked in early S phase by sequential use of isoleucine deprivation and blockade with 5-fluorodeoxyuridine or aphidicolin. Both the H1:core histone ratio in isolated nuclei and the H1 content of the cell are reduced 20-60%, depending on the duration of the block. The new deoxyribonucleic acid (DNA) synthesized during S-phase block has a shorter nucleosome repeat length than that of bulk chromatin, but it is nearly equally resistant as bulk DNA to attack by micrococcal nuclease. During the time that H1 content is decreasing, bulk chromatin also undergoes structural changes so that its nucleosome cores appear to be more closely packed along the DNA chain. The losses in H1 content and changes in chromatin structure are similar to those reported for cells blocked in early S phase by hydroxyurea [D'Anna, J. A., & Prentice, D. A. (1983) Biochemistry 22, 5631-5640]. The results suggest that losses of H1 and changes in chromatin structure are general events which occur when the elongation of initiated replicons or the joining of intermediate-sized DNA fragments is retarded during replication. They are consistent with the notions that H1 is lost from initiated replicons and/or the loss of H1 is part of an alarm response in the cell which might facilitate events leading to gene amplification.  相似文献   

3.
Recombinant DNA and hybridization techniques have been used to compare the organization of mitochondrial DNA (mtDNA) from normal (N) and Texas male sterile (T) cytoplasms of maize. Bam H1 restriction fragments of normal mtDNA were cloned and used in molecular hybridizations against Southern blots of Bam H1 digested N and T mtDNA. Fifteen of the 35 fragments were conserved in both N and T as indicated by hybridization to comigrating bands in their restriction patterns. Only three fragments produced autoradiographs whose differences could reasonably be attributed to single changes in the cleavage site of the enzyme while approximately half (17/35) of the clones resulted in more complicated differences between N and T. The autoradiographs produced by these 17 clones indicated multiple cleavage site changes and/or sequence rearrangements of the mtDNA. Patterns of six of these 17 clones indicated partial duplication of the sequence and two showed variation in the intensity of hybridization between N and T, which may be related to the molecular heterogeneity phenomenon found in maize mitochondrial genomes. The large proportion of changes observed between N and T mtDNA indicates that rearrangements may have played an important role in the evolution of the maize mitochondrial genome.  相似文献   

4.
Specific interaction of histone H1 with eukaryotic DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
The interaction of calf thymus histone H1 with homologous and heterologous DNA has been studied at different ionic strengths. It has been found that about 0.5 M NaCl histone H1, and its fragments N-H1 (residues 1-72) and C-H1 (residues 73-C terminal), precipitate selectively a small fraction of calf thymus DNA. This selective precipitation is preserved up to very high values (less than 2.0) of the input histone H1/DNA ratio. The percentage of DNA insolubilized by histone H1 under these ionic conditions is dependent upon the molecular weight of the nucleic acid, diminishing from 18% fro a Mw equals 1.0 x 10(7) daltons to 5% for a Mw equals 8.0 x 10(4) daltons. The base composition of the precipitated DNA is similar to that of the bulk DNA. Calf thymus histone H1 also selectively precipitates a fraction of DNA from other eukaryotes (herring, trout), but not from some prokaryotes (E. coli, phage gamma. On the other hand, at 0.5 M NaCl, the whole calf thymus DNA (but not E. coli DNA) presents a limited number of binding sites for histone H1, the saturation ratio histone H1 bound/total DNA being similar to that found in chromatin. A similar behavior is observed from the histone H1 fragments, N-H1 and C-H1, which bind to DNA in complementary saturation ratios. It is suggested that in eukaryotic organisms histone H1 molecules maintain specific interactions with certain DNA sequences. A fraction of such specific complexes could act as nucleation points for the high-order levels of chromatin organization.  相似文献   

5.
The action of six different enzymes on the function and structure of Factor H was investigated by use of sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, haemagglutination, two enzyme-linked immunosorbent assay systems and an assay for Factor I cofactor activity. Six monoclonal antibodies directed against the 38 kDa tryptic fragment of Factor H [which contains the binding site for C3b (a 180 kDa fragment of the third component of complement) and the cofactor activity] were also used to detect cleavage products derived from the same fragment. Elastase, chymotrypsin A4 or trypsin first cleaved Factor H to 36-38 kDa fragments carrying all six monoclonal anti-(Factor H)-binding sites. In parallel, the interaction of Factor H with surface-bound C3b was lost, whereas the cofactor function was preserved. Further cleavage of the 36-38 kDa fragments into two 13-19 kDa fragments (one carrying the MAH4 and MRC OX 24 epitopes, the other the MAH1, MAH2, MAH3 and MRC OX 23 epitopes) destroyed cofactor activity. Pepsin, bromelain or papain rapidly split off a 13-15 kDa fragment of Factor H carrying the MAH1, MAH2, MAH3 and MRC OX 23 epitopes and destroyed all tested functions of Factor H. Ficin cleaved Factor H into disulphide-linked fragments smaller than 25 kDa, but did not affect the functions of the Factor H molecule. The 38 kDa tryptic fragment of Factor H is the N-terminal end of the Factor H molecule, as determined by N-terminal sequence analysis. A model is presented of the substructure of Factor H.  相似文献   

6.
Camelidae possess an unusual form of antibodies lacking the light chains. The variable domain of these heavy chain antibodies (V(HH)) is not paired, while the V(H) domain of all other antibodies forms a heterodimer with the variable domain of the light chain (V(L)), held together by a hydrophobic interface. Here, we analyzed the biophysical properties of four camelid V(HH) fragments (H14, AMD9, RN05, and CA05) and two human consensus V(H)3 domains with different CDR3 loops to gain insight into factors determining stability and aggregation of immunoglobulin domains. We show by denaturant-induced unfolding equilibria that the free energies of unfolding of V(HH) fragments are characterized by Delta G(N-U) values between 21.1 and 35.0 kJ/mol and thus lie in the upper range of values for V(H) fragments from murine and human antibodies. Nevertheless, the V(HH) fragments studied here did not reach the high values between 39.7 and 52.7 kJ/mol of the human consensus V(H)3 domains with which they share the highest degree of sequence similarity. Temperature-induced unfolding of the V(HH) fragments that were studied proved to be reversible, and the binding affinity after cooling was fully retained. The melting temperatures were determined to be between 60.1 and 66.7 degrees C. In contrast, the studied V(H)3 domains aggregated during temperature-induced denaturation at 63-65 degrees C. In summary, the camelid V(HH) fragments are characterized by a favorable but not unusually high stability. Their hallmark is the ability to reversibly melt without aggregation, probably mediated by the surface mutations characterizing the V(HH) domains, which allow them to regain binding activity after heat renaturation.  相似文献   

7.
Random amplification of polymorphic DNA (RAPD) was used to analyze six species, three populations, and seven regional cultivars of barley. A unique pattern of amplified DNA products was obtained for each species of the genus Hordeum. High polymorphism of barley species was revealed. Specific fragments were found in most RAPD patterns; the fragments can be used as molecular markers of corresponding species and subspecies. Several other DNA fragments were shown to serve as molecular markers of the H genome. Specific RAPD patterns were obtained for each population and each cultivar of H. vulgare sensu lato. In total, variation between the populations and between the cultivars was substantially lower than between species. Cluster analysis (UPGMA) was used to estimate genetic distances between the Hordeum species, between the H. spontaneum populations, and between regional H. vulgare cultivars and a dendrogram was constructed.  相似文献   

8.
Certain antibody Fab fragments directed against the C terminus of outer surface protein B (OspB), a major lipoprotein of the Lyme disease spirochete, Borrelia burgdorferi, have the unusual property of being bactericidal even in the absence of complement. We report here x-ray crystal structures of a C-terminal fragment of B. burgdorferi OspB, which spans residues 152-296, alone at 2.0-A resolution, and in a complex with the bactericidal Fab H6831 at 2.6-A resolution. The H6831 epitope is topologically analogous to the LA-2 epitope of OspA and is centered around OspB Lys-253, a residue essential for H6831 recognition. A beta-sheet present in the free OspB fragment is either disordered or removed by proteolysis in the H6831-bound complex. Other conformational changes between free and H6831-bound structures are minor and appear to be related to this loss. In both crystal structures, OspB C-terminal fragments form artificial dimers connected by intermolecular beta-sheets. OspB structure, stability, and possible mechanisms of killing by H6831 and other bactericidal Fabs are discussed in light of the structural data.  相似文献   

9.
A Horne  P Gettins 《Biochemistry》1992,31(8):2286-2294
The effects of length and composition upon the antithrombin-binding properties of heparin have been investigated for two series of structurally related heparin oligosaccharides. Each series consists of a tetrasaccharide, hexasaccharide, and octasaccharide heparin fragment composed of alternating hexuronic acid (either iduronate 2-sulfate or glucuronate) and glucosamine 6,N-disulfate residues. These two series represent dominant structural motifs in intact heparin and differ from each other by the presence of a glucuronic acid in one series in place of an iduronate 2-sulfate residue penultimate to the reducing end of the fragment. Perturbations to the 1H resonances in the NMR spectrum of antithrombin upon binding of the two series of heparin fragments are compared to those generated by intact heparin binding, as well as to the effects of binding of a synthetic high-affinity pentasaccharide. All of the heparin fragments examined appear to bind to antithrombin at the same site. Three of the heparin fragments (hexasaccharide-2, octasaccharide-2, and octasaccharide-1) produce almost identical perturbations in the antithrombin 1H NMR spectrum compared to binding of intact heparin, including perturbations of resonances from tryptophan 49. This indicates that neither the glucuronic acid nor the trisulfated glucosamine residue (structural elements known to be part of the high-affinity heparin motif) are necessary for the majority of the conformational changes induced upon heparin fragment binding to antithrombin. However, the low anticoagulant activity of these fragments indicates that the changes in protein conformation upon fragment binding, as manifested by these 1H resonance perturbations, are not sufficient for catalytic activation of the inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
ABSTRACT: BACKGROUND: Refractory anemia with excess blasts subtype 1 (RAEB-1) is a subgroup of myelodysplastic syndrome. It represents a heterogeneous group of oncohematological bone marrow diseases, which occur particularly in elderly patients. The aim of this proteomic study was to search for plasma protein alterations in RAEB-1 patients. RESULTS: A total of 24 plasma samples were depleted of fourteen high-abundant plasma proteins, analyzed with 2D SDS-PAGE, compared, and statistically processed with Progenesis SameSpots software. Proteins were identified by nanoLC-MS/MS. Retinol-binding protein 4 and leucine-rich alpha-2-glycoprotein were relatively quantified using mass spectrometry. 56 significantly differing spots were found; and in 52 spots 50 different proteins were successfully identified. Several plasma proteins that changed either in their level or modification have been described herein. The plasma level of retinol-binding protein 4 was decreased, while leucine-rich alpha-2-glycoprotein was modified in RAEB-1 patients. Changes in the inter-alpha-trypsin inhibitor heavy chain H4, altered protein fragmentation, or fragments modifications were observed. CONCLUSIONS: This study describes proteins, which change quantitatively or qualitatively in the plasma of RAEB-1 patients. It is the first report on qualitative changes in the leucine-rich alpha-2-glycoprotein in the RAEB-1 subgroup of myelodysplastic syndrome. Described changes in the composition or modification of inter-alpha-trypsin inhibitor heavy chain H4 fragments in RAEB-1 are in agreement with those changes observed in previous study of refractory cytopenia with multilineage dysplasia, and thus H4 fragments could be a marker specific for myelodysplastic syndrome.  相似文献   

11.
BACKGROUND: Amoxicillin-based therapies are highly effective for the treatment of Helicobacter pylori infections, but the efficacy may decrease as the incidence of amoxicillin resistance is increasing. So far, the molecular mechanism underlying stable amoxicillin resistance has only been identified for a few naturally occurring amoxicillin-resistant (Amx) H. pylori isolates, and is mediated by mutations in penicillin-binding protein 1A (PBP1A). In this study the molecular mechanism underlying amoxicillin resistance of seven additional Amx H. pylori isolates has been established. METHODS: H. pylori strain 26695 (minimal inhibitory concentration (MIC) 0.125 mg/l) was naturally transformed with total DNA and pbp1A polymerase chain reaction (PCR) products from the seven Amx H. pylori isolates, and the MIC of amoxicillin and pbp1A gene sequence of the obtained Amx transformants were determined. RESULTS: Replacement of the wild-type pbp1A gene of H. pylori reference strain 26695 by the pbp1A gene of the Amx H. pylori isolates resulted in an increased MIC (0.5-1.0 mg/l). Sequence analysis of the smallest PBP1A fragments able to transfer the resistance indicated that several amino acid substitutions in or adjacent to the second (SKN402-404) and third (KTG555-557) conserved penicillin-binding protein motifs (PBP-motifs) mediate amoxicillin resistance in H. pylori. This was confirmed by site-directed mutagenesis using oligonucleotides that contained defined mutations in or adjacent to these PBP-motifs. CONCLUSION: In naturally occurring Amx H. pylori isolates, amoxicillin resistance is mediated by various mutational changes located in or adjacent to the second and third PBP-motifs of the PBP1A. Although we cannot exclude the role of the other genes in amoxicillin resistance, it is likely that multiple mutational changes in the PBP1A gene are the predominant cause of amoxicillin resistance in H. pylori. The findings of this study currently preclude the rapid detection of amoxicillin resistance in H. pylori by molecular tests.  相似文献   

12.
The complete amino acid sequence (123 residues) of histone H2A from erythrocytes of the marine worm Sipunculus nudus, has been established from data provided by automated sequence analysis of large fragments generated by V8 staphylococcal protease digestion of histone H2A and by limited hydrolysis of the protein with alpha-chymotrypsin and from structural studies of tryptic peptides of the protein. By comparison with calf homologous histone, the sipunculid histone H2A shows 6 deletions and 13 substitutions. Six of the substitutions are non-conservative. Most of the evolutionary changes are mainly observed in the basic amino-terminal and carboxy-terminal regions of the molecule, which are the primary DNA-binding sites. Few conservative point changes are observed in the central region (residues 18-118) which interacts strongly with histone H2B to form the dimer H2A-H2B. 60% of the H2A molecules were found phosphorylated on the amino-terminal residue, N-acetyl-serine. The high content of phosphorylated histone H2A in the sipunculid erythrocyte chromatin could probably be related to smaller repeat length (177 +/- 5 base pairs) of nucleosomal DNA and to nuclear inactivation and chromatin condensation.  相似文献   

13.
The effects of 50 microM of progesterone (P4), estradiol (E2), estrone (E1), estriol (E3), dehydroepiandrosterone (DHIA), androstenedione (delta 4) and testosterone (T) on the bioconversion of [3H]pregnenolone (6 nM) to [3H]P4 were investigated by incubating 200 mg of tissue fragments as well as equivalent aliquots of microsomes from human term placenta during 30 min. All the steroids assayed, except E3, significantly inhibited the [3H]P4 formation in a microsome incubation system with respect to the control assay (P less than 0.001). Conversely in a tissue incubation system. P4, E1 as well as E3 had no effect on [3H]pregnenolone bioconversion while E2 slightly decreased the [3H]P4 formation (P less than 0.05) compared with the control. A significant inhibition was observed in this system with the other steroids (P less than 0.001). To investigate these apparent different results of inhibition-noninhibition of the same steroids irrespective of the system of incubation used, the effects of P4, E2 and T on 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD) activity were studied in tissue fragments and microsomes in kinetic terms. The results found indicate that these steroids inhibited in a competitive fashion the 3 beta-HSD activity in both systems. The different Ki values found in tissue fragments and microsomes respectively for P4 (1.8 microM vs 0.5 microM), E2 (2.3 microM vs 0.6 microM) and T (0.25 microM vs 0.3 microM) explain the bioconversion results obtained in presence of 50 microM of the same steroids. These results include inhibition of [3H]P4 formation by T in tissue fragments as well as in microsomes whereas P4 and E2 inhibited the [3H]P4 formation only in microsomes. Furthermore, the comparison of these Ki values with the available data of intraplacental and circulating concentrations of the same steroids in human term pregnancy suggest that only P4 would be expected to cause marked 3 beta-HSD inhibition in physiological conditions.  相似文献   

14.
EcoRI restriction endonuclease map of the composite R plasmid NR1.   总被引:41,自引:32,他引:9       下载免费PDF全文
A physical map of the composite R plasmid NR1 has been constructed using specific cleavage of deoxyribonucleic acid (DNA) by the restriction endonuclease EcoR-. Digestion of composite NR1 DNA by EcoRI yields thirteen fragments. The six largest fragments (designated A to F) are from the resistance transfer factor component that harbors the tetracycline resistance genes (RTF-TC). The seven smallest fragments (designated G to M) are from the r-determinants component that harbors the chloramphenicol (CM), streptomycin-spectinomycin (SM/SP), and sulfonamide (SA) resistance genes. The largest fragment of several RTF-TC segregants of NR1 that have deleted the r-determinants component is 0.8 X 10(6) daltons larger than fragment A of composite NR1. Only a part of fragment H of the r-determinants component is amplified in transitioned NR1 DNA in Proteus mirabilis, which consists of multiple, tandem sequences of r-determinants attached to a single copy of the RTF-TC component. Both of these changes can be explained by the locations of the excision sites at the RTF-TC: r-determinants junctions that are involved in the dissociation and reassociation of the RTF-TC and r-determinants components. The thirteen fragments of composite NR1 DNA produced by EcoRI have been ordered using partial digestion techniques. The order of the fragments is: A-D-C-E-F-B-H-I-L-K-G-M-J. The approximate locations of the TC, CM, SM/SP, and SA resistance genes on the EcoRI map were determined by analyzing several deletion mutants of NR1.  相似文献   

15.
Definition of a C-reactive protein binding determinant on histones   总被引:3,自引:0,他引:3  
C-reactive protein (CRP) is an acute phase inflammatory protein in man which binds to phosphocholine, chromatin, histones, and the 70-kDa protein of the U1 small nuclear ribonucleoprotein particle in a calcium-dependent, phosphocholine-inhibitable manner. CRP also binds to other proteins including fibronectin. The determinants involved in CRP binding to these diverse proteins have not been identified. The binding of CRP to histones was examined as these proteins are available in large quantity at high purity and subject to protease digestion with well characterized products. Histone H1 was digested with thrombin and trypsin to produce three distinct fragments, N-terminal, central globular, and C-terminal. CRP was shown only to bind to the C-terminal fragment. Binding to histone H2A was also examined. CRP binding was not diminished by cleavage of the C-terminal fragment but was greatly decreased when the central globular region of H2A was tested. Peptides were prepared to be identical to the N- and C-terminal fragments of H2A. The N-terminal (15 amino acid) fragment of H2A blocked CRP-induced precipitation of phosphocholine-coupled bovine serum albumin and histone H2A, whereas the C-terminal fragment showed no inhibition. Thus we have defined the first reported CRP binding determinant on a protein.  相似文献   

16.
17.
High molecular weight (HMW) fragmentation of nuclear chromatin was studied in cultured rat oligodendrocytes (OL) exposed to hydrogen peroxide (H2O2). Intact genomic DNA was isolated by agarose embedding, and analyzed by field inversion gel electrophoresis, with and without S1 endonuclease digestion to detect and discriminate between single and double stranded fragmentations, respectively. The exposure of OL to H2O2 resulted in a very rapid degradation of chromosomal DNA into HMW fragments that reflect native chromatin structure. Hence, within 10 min after the addition of 1 mM H2O2, a discrete pool representing approximately 45% of the nuclear chromatin underwent single strand digestion into >400 kb fragments likely at AT-rich matrix attachment regions. Subsequent accumulation of single stand breaks at these regions led to bifilar scission. Ultimately, chromatin within this susceptible pool was cleaved at remaining matrix attachment regions into 50-200 kb fragments. Chromatin digestion could be elicited with H2O2 concentrations as low as 50 microM. After the removal of H2O2, most >400 kb fragments were religated within 2 h; however, digestion into 50-200 kb fragments was irreversible. The DNA digestion was not accompanied by the degradation of nuclear proteins, i.e., lamins A/C and poly (ADP-ribose) polymerase indicating that chromatin fragmentation is unlikely to be mediated by proteolysis. In conclusion, H2O2 at pathologically relevant concentrations induces a very rapid and extensive digestion of OL chromatin into HMW fragments. Because the chromatin fragmentation is only partly reversible, it may be a decisive factor in committing oxidatively stressed OL to degeneration and/or death.  相似文献   

18.
《MABS-AUSTIN》2013,5(7):1233-1244
ABSTRACT

In recent years, capillary electrophoresis–sodium dodecyl sulfate (cSDS) has been widely used for high resolution separation and quantification of the fragments and aggregates of monoclonal antibodies (mAbs) to ensure the quality of mAb therapeutics. However, identification of the low-molecular-weight (LMW) and high-molecular-weight (HMW) species detected in cSDS electropherograms has been based primarily on the approximate MWs calculated from standard curves using known MW standards and correlations with fragments and aggregates identified by other methods. It is not easy to collect sufficient amounts of H/LMW species from cSDS for analysis by orthogonal methods and the direct coupling of cSDS with mass spectrometry (MS) is very difficult due to interference from SDS. In this study, we describe the precise identification of H/LMW species detected by cSDS using reversed-phase high performance liquid chromatography (RP-HPLC) coupled with top-down tandem MS analysis. The H/LMW species were first identified by on-line RP-HPLC MS analysis and the RP-HPLC fractions were then analyzed by cSDS to connect the identified H/LMW species with the peaks in the cSDS electropherogram. With this method, 58 unique H/LMW species were identified from an immunoglobulin G1 (IgG1) mAb. The identified fragments ranged from 10 kDa single chain fragments to 130 kDa triple chain fragments, including some with post-translational modifications. This is the first study to clearly identify the antibody fragments, including the exact clipping sites, observed in cSDS electropherograms. The methodology and results presented here should be applicable to most other IgG1 mAbs.  相似文献   

19.
Kupffer cells, expressing toll-like receptor 4 (TLR4), play a central role in hepatic ischemia/reperfusion (I/R) injury. Hyaluronic acid (HA) fragments, degradative products of high-molecular-weight HA (HMW-HA), acquire the ability to activate immune cells under inflammatory conditions. Here we investigated whether HA fragments could activate Kupffer cells and analyzed the underlying mechanism. Kupffer cells were isolated from wild-type mice (WT, C3H/HeN) and TLR4 mutant mice (C3H/HeJ) and HA fragments were produced by the methods of enzyme digestion and chromatography. Then Kupffer cells were stimulated by HA fragments or other control stimuli. The activation of Kupffer cells was estimated as the release of pro-inflammatory cytokines. The activation of p38 MAPK pathway of Kupffer cells was checked and blocking experiments were done as well. The results indicated that HA fragments acquired the ability to activate Kupffer cells in vitro, which was TLR4 dependent and not due to contamination of lipopolysaccharide. Experiments of p38 MAPK kinase inhibition by SB-203580 verified p38 MAPK was required in HA fragments induced Kupffer cells activation. This suggests that HA fragments, degradative products of one of the major glycosaminoglycans of the extracellular matrix, play critical roles in Kupffer cell activation mediated by TLR4 signaling pathway, which is, at least partially, dependent on p38 MAPK activation. These anthors contributed equally to this work Supported by the National Natural Science Foundation of China (Grant No. 30500487 and 30700792)  相似文献   

20.
We have analyzed the histone genes from the sea urchin Lytechinus pictus. Examination of native DNA from individuals reveals four major Eco RI restriction endonuclease histone gene DNA fragments which have been labeled A (6.0 kb), B (4.1 kb), C (3.1 kb) and D (1.2 kb). The fragments A, B and C have been cloned into E. coli plasmids (pLpA, pLpB and pLpC). These histone gene fragments display length and sequence heterogeneity in different individuals. The plasmid pLpA contains the coding regions for H1, H4, H2B and H3 histones, and we determined that the DNA fragment D is tandem to A in native DNA and that it contains the H2A gene. The plasmids pLpB and pLpC contain the histone genes H2A-H1-H4 and H2B-H3, respectively, and together contain the sequences for the five major histones. Restriction analysis of native L. pictus DNA reveals that B and C are tandem to each other but not intermingled with the A-D-type repeat units, and are thus in separate clusters with a repeat length of 7.2 kb. Since the two cluster types do not segregate, they are not alleles. Hybridization of histone mRNA to exonuclease III-digested linear DNA demonstrated an identical polarity of the histone genes in the A-D- and B-C-type repeat units. This result revealed that the L. pictus histone genes have a polarity which is the same as other sea urchin histone genes examined to date—that is, 3′ H1-H4-H2B-H3-H2A 5′. Restriction endonuclease cleavage patterns of the cloned segments indicate that considerable sequence heterogeneity exists between the two types of histone gene repeat units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号