首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Incompatible combinations of plant and plant bacteria produce an incompatible reaction at different rates, producing, besides the typical hypersensitive reaction, also darkening, yellowing, and fading. Plants differ in their responsiveness to plant bacteria in terms of reaction rate. Study of incompatible reactions may differentiate the species and strains of plant bacteria if properly explored.  相似文献   

3.
4.
Nitric oxide (NO) is a toxic gas encountered by bacteria as a product of their own metabolism or as a result of a host immune response. Non-toxic concentrations of NO have been shown to initiate changes in bacterial behaviors such as the transition between planktonic and biofilm-associated lifestyles. The heme nitric oxide/oxygen binding proteins (H-NOX) are a widespread family of bacterial heme-based NO sensors that regulate biofilm formation in response to NO. The presence of H-NOX in several human pathogens combined with the importance of planktonic–biofilm transitions to virulence suggests that H-NOX sensing may be an important virulence factor in these organisms. Here we review the recent data on H-NOX NO signaling pathways with an emphasis on H-NOX homologs from pathogens and commensal organisms. The current state of the field is somewhat ambiguous regarding the role of H-NOX in pathogenesis. However, it is clear that H-NOX regulates biofilm in response to environmental factors and may promote persistence in the environments that serve as reservoirs for these pathogens. Finally, the evidence that large subgroups of H-NOX proteins may sense environmental signals besides NO is discussed within the context of a phylogenetic analysis of this large and diverse family.  相似文献   

5.
Discovery of virulence factors of pathogenic bacteria   总被引:1,自引:0,他引:1  
  相似文献   

6.
Bacterial growth and virulence often depends upon the cooperative release of extracellular factors excreted in response to quorum sensing (QS). We carried out an in vivo selection experiment in mice to examine how QS evolves in response to variation in relatedness (strain diversity), and the consequences for virulence. We started our experiment with two bacterial strains: a wild-type that both produces and responds to QS signal molecules, and a lasR (signal-blind) mutant that does not release extracellular factors in response to signal. We found that: (i) QS leads to greater growth within hosts; (ii) high relatedness favours the QS wild-type; and (iii) low relatedness favours the lasR mutant. Relatedness matters in our experiment because, at relatively low relatedness, the lasR mutant is able to exploit the extracellular factors produced by the cells that respond to QS, and hence increase in frequency. Furthermore, our results suggest that because a higher relatedness favours cooperative QS, and hence leads to higher growth, this will also lead to a higher virulence, giving a relationship between relatedness and virulence that is in the opposite direction to that usually predicted by virulence theory.  相似文献   

7.
Hilbi H 《Cellular microbiology》2006,8(11):1697-1706
Phosphoinositide metabolism plays a pivotal role in the regulation of receptor-mediated signal transduction, actin remodelling and membrane dynamics. Phosphoinositides co-ordinate these processes by recruiting protein effectors to distinct cellular membranes in a time- and organelle-dependent manner. Intracellular bacterial pathogens interfere with phosphoinositide metabolism to direct their entry into eukaryotic cells, form replication-permissive vacuoles, modulate apoptosis, or trigger fluid secretion. Gram-negative pathogens such as Legionella pneumophila, Shigella flexneri, or Salmonella enterica employ secretion systems to invade host cells by 'pathogen-triggered phagocytosis' and thereby bypass a requirement for phosphatidylinositol 3-kinases [PI(3)Ks]. Contrarily, 'receptor-mediated phagocytosis' of Yersinia spp., Listeria monocytogenes and other pathogenic bacteria depends on PI(3)Ks. Secreted effector proteins have been found to directly bind to and modify host cell phosphoinositides, thus modulating phagocytosis and intracellular survival of the pathogens. These effectors include L. pneumophila proteins that specifically attach to phosphatidylinositol 4-phosphate [PI(4)P] on the Legionella-containing vacuole, and phosphoinositide phosphatases produced by S. flexneri, S. enterica or Mycobacterium tuberculosis. This review covers current knowledge about subversion of host cell phosphoinositide metabolism by intracellular bacterial pathogens with an emphasis on recently identified secreted effector proteins directly engaging phosphoinositides.  相似文献   

8.
9.
10.
11.
Silkworms are killed by injection of pathogenic bacteria, such as Staphylococcus aureus and Streptococcus pyogenes, into the haemolymph. Gene disruption mutants of S. aureus whose open reading frames were previously uncharacterized and that are conserved among bacteria were examined for their virulence in silkworms. Of these 100 genes, three genes named cvfA, cvfB, and cvfC were required for full virulence of S. aureus in silkworms. Haemolysin production was decreased in these mutants. The cvfA and cvfC mutants also had attenuated virulence in mice. S. pyogenes cvfA-disrupted mutants produced less exotoxin and had attenuated virulence in both silkworms and mice. These results indicate that the silkworm-infection model is useful for identifying bacterial virulence genes.  相似文献   

12.
本文讨论最新发展起来的病原真菌和细菌毒性基因的分离和鉴别原理和方法,涉及到基因表达分析法、基因转移方法、基因组比较法、诱变方法及其诱变子的筛选鉴定。着重讨论了这些方法的优点和局限性,评估了标记诱变法(STM)和限制酶介导的整合法(REMI)两者相互结合在病原真菌毒性基因克隆中的应用潜力。  相似文献   

13.
Abstract Some pink pigmented facultative methylotrophic bacteria (PPFMs) can utilize monosaccharides as a single carbon source. Assays of key enzymes of various pathways of carbohydrate metabolism indicate that such strains either metabolise glucose by the Entner-Doudoroff pathway or lack a suitable permease for this sugar.  相似文献   

14.
Protozoan grazing is a major trophic pathway whereby the biomass re-enters the food web. Nonetheless, not all bacteria are digested by protozoa and the number known to evade digestion, resulting in their environmental augmentation, is increasing. We investigated the interactions of Bacillus cereus, Enterococcus faecalis, Enteropathogenic Escherichia coli (EPEC), Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and methicillin-sensitive Staphylococcus aureus (MSSA), with the amoeba, Acanthamoeba polyphaga. There was evidence of predation of all bacterial species except L. monocytogenes and S. aureus, where extracellular numbers were significantly higher when cultured with amoebae compared with growth in the absence of amoebae. Intracellular growth kinetic experiments and fluorescent confocal microscopy suggest that S. aureus survived and may even multiply within A. polyphaga, whereas there was no apparent intra-amoebal replication of L. monocytogenes and higher numbers were likely sustained on metabolic waste products released during coculture.  相似文献   

15.
16.
Two strains of Methanosarcina (M. Barkeri strain MS, isolated from sewage sludge, and strain UBS, isolated from lake sediments) were found to have similar cellular properties and to have DNA base compositions of 44 mol percent guanosine plus cytosine. Strain MS was selected for further studies of its one-carbon metabolism. M. barkeri grew autotrophically via H2 oxidation/CO2 reduction. The optimum temperature for growth and methanogenesis was 37°C. H2 oxidation proceeded via an F420-dependent NADP+-linked hydrogenase. A maximum specific activity of hydrogenase in cell-free extracts, using methyl viologen as electron acceptor, was 6.0 mol min · mg protein at 37°C and the optimum pH (9.0). M. barkeri also fermented methanol andmethylamine as sole energy sources for growth. Cell yields during growth on H2/CO2 and on methanol were 6.4 and 7.2 mg cell dry weight per mmol CH4 formed, respectively. During mixotrophic growth on H2/CO2 plus methanol, most methane was derived from methanol rather than from CO2. Similar activities of hydrogenase were observed in cell-free extracts from H2/CO2-grown and methanol-grown cells. Methanol oxidation apparently proceeded via carrierbound intermediates, as no methylotrophy-type of methanol dehydrogenase activity was observed in cell-free extracts. During growth on methanol/CO2, up to 48% of the cell carbon was derived from methanol indicating that equivalent amounts of cell carbon were derived from CO2 and from an organic intermediate more reduced than CO2. Cell-free extracts lacked activity for key cell carbon synthesis enzymes of the Calvin cycle, serine path, or hexulose path.Abbreviations CAPS cycloaminopropane sulfonic acid - CH3-SCoM methyl coenzyme M - DCPIP 2,6-dichlorophenolindophenol - DEAE diethylaminoethyl - dimethyl POPOP 1,4-bis-2-(4-mothyl-5-phenyloxazolyl)-benzene - DNA deoxyribonucleic acid - dpm dismtegrations per min - DTT dithiothreitol - EDTA ethylenediamine tetraacetic acid - F420 factor 420 - G+C guanosine plus cytosine - NAD+ nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - PBBW phosphate buffered basal Weimer - PMS phenazine methosulfate - PPO 2,5-diphenyloxazole - rRNA ribosomal ribonucleic acid - RuBP ribulose-1,5-bisphosphate - Tris tris-hydroxymethyl-aminomethane - max maximum specific growth rate  相似文献   

17.
Summary Methionine, up to 10–3 M, added to a basal medium enhanced bacterial ethylene production in 14 of the 20 bacteria tested. The effects of substrate, cofactors, light, and temperature on ethylene production byPseudomonas solanacearum #25 revealed that the greatest effect occurred when 10–5 M methionine and 10–4 M FMN were combined, from which 4.10l/l of ethylene were produced. Higher levels of methionine resulted in production of high levels of non-enzymically produced ethylene and death of the bacteria. This non-enzymic production of ethylene was eliminated in the dark. Copper had no effect upon ethylene production. Twenty-nine and 35°C were inhibitory, whereas 19°C appeared to be near optimum for ethylene production.Pseudomonas solanacaerum #25 and some other bacteria are capable of ethylene production and methionine and FMN enhance this production.This work was supported by the Fred C. Gloeckner Foundation and the University of Minnesota Graduate School Grant in Aid #496-0307-4909-02.  相似文献   

18.
19.
The mollicutes are cell wall-less bacteria that live in close association with their eukaryotic hosts. Their genomes are strongly reduced and so are their metabolic capabilities. A survey of the available genome sequences reveals that the mollicutes are capable of utilizing sugars as source of carbon and energy via glycolysis. The pentose phosphate pathway is incomplete in these bacteria, and genes encoding enzymes of the tricarboxylic acid cycle are absent from the genomes. Sugars are transported by the phosphotransferase system. As in related bacteria, the phosphotransferase system does also seem to play a regulatory role in the mollicutes as can be concluded from the functionality of the regulatory HPr kinase/phosphorylase. In Mycoplasma pneumoniae, the activity of HPr kinase is triggered in the presence of glycerol. This carbon source may be important for the mollicutes since it is available in epithelial tissues and its metabolism results in the formation of hydrogen peroxide, the major virulence factor of several mollicutes. In plant-pathogenic mollicutes such as Spiroplasma citri, the regulation of carbon metabolism is crucial in the adaptation to life in plant tissues or the insect vectors. Thus, carbon metabolism seems to be intimately linked to pathogenicity in the mollicutes.  相似文献   

20.
Genetics of carbon metabolism in methylotrophic bacteria   总被引:1,自引:0,他引:1  
Abstract The application of genetic techniques to the methylotrophic bacteria has greatly enhanced studies of these important organisms. Two methylotrophic systems have been studied in some detail, the serine cycle for formaldehyde assimilation and the methanol oxidation system. In both cases, genes have been cloned and mapped in Methylobacterium species (facultative serine cycle methanol-utilizers). In addition, methanol oxidation genes have been studied in an autotrophic methanol-utilizer ( Paracoccus denitrificans ) and three methanotrophs ( Methylosporovibrio methanica, Methylomonas albus and Methylomonas sp. A4). Although much remains to be learned in these systems, it is becoming clear that the order of C1 genes has been conserved to some extent in methylotrophic bacteria, and that many C1 genes are loosely clustered on the chromosome. Operons appear to be rare, but some examples have been observed. The extension of genetic approaches to both the obligate and facultative methylotrophs holds much promise for the future in understanding and manipulating the activities of these bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号