首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carnitine palmitoyltransferase (CPT) I catalyzes the conversion of long-chain fatty acyl-CoAs to acyl carnitines in the presence of l-carnitine, a rate-limiting step in the transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix. To determine the role of the 15 cysteine residues in the heart/skeletal muscle isoform of CPTI (M-CPTI) on catalytic activity and malonyl-CoA sensitivity, we constructed a 6-residue N-terminal, a 9-residue C-terminal, and a 15-residue cysteineless M-CPTI by cysteine-scanning mutagenesis. Both the 9-residue C-terminal mutant enzyme and the complete 15-residue cysteineless mutant enzyme are inactive but that the 6-residue N-terminal cysteineless mutant enzyme had activity and malonyl-CoA sensitivity similar to those of wild-type M-CPTI. Mutation of each of the 9 C-terminal cysteines to alanine or serine identified a single residue, Cys-305, to be important for catalysis. Substitution of Cys-305 with Ala in the wild-type enzyme inactivated M-CPTI, and a single change of Ala-305 to Cys in the 9-residue C-terminal cysteineless mutant resulted in an 8-residue C-terminal cysteineless mutant enzyme that had activity and malonyl-CoA sensitivity similar to those of the wild type, suggesting that Cys-305 is the residue involved in catalysis. Sequence alignments of CPTI with the acyltransferase family of enzymes in the GenBank led to the identification of a putative catalytic triad in CPTI consisting of residues Cys-305, Asp-454, and His-473. Based on the mutagenesis and substrate labeling studies, we propose a mechanism for the acyltransferase activity of CPTI that uses a catalytic triad composed of Cys-305, His-473, and Asp-454 with Cys-305 serving as a probable nucleophile, thus acting as a site for covalent attachment of the acyl molecule and formation of a stable acyl-enzyme intermediate. This would in turn allow carnitine to act as a second nucleophile and complete the acyl transfer reaction.  相似文献   

2.
The predicted conformation of ranatuerin-1 (SMLSVLKNLG(10)KVGLGFVACK(20)INK QC), an antimicrobial peptide first isolated from the skin of the bullfrog Rana catesbeiana, comprises three structural domains: alpha-helix (residues 1-8), beta-sheet (residues 11-16) and beta-turn (residues 20-25). Circular dichroism studies confirm significant alpha-helical character in 50% trifluoroethanol. Replacement of Cys-19 and Cys-25 by serine resulted only in decreased antimicrobial potency but deletion of either the cyclic heptapeptide region [residues (19-25)] or the N-terminal domain [residues (1-8)] produced inactive analogs. Substitution of the glycine residues in the central domain of the [Ser-19, Ser-25] analog by lysine produced inactive peptides despite increased alpha-helical content and cationicity. The substitution Asn-8-->Lys gave a ranatuerin-1 analog with increased alpha-helicity and cationicity and increased potency against a range of Gram-positive and Gram-negative bacteria and against C. albicans but only a small increase (21%) in hemolytic activity. In contrast, increasing alpha-helicity and hydrophobicity by the substitution Asn-22-->Ala resulted in a 3.5-fold increase in hemolytic activity. Effects on antimicrobial potencies of substitutions of neutral amino acids at positions 4, 18, 22, and 24 by lysine were less marked. Strains of pathogenic E. coli from different groups showed varying degrees of sensitivity to ranatuerin-1 (MIC between 5 and 40 microM) but [Lys-8] ranatuerin-1 showed increased potency (between 2- and 8-fold; P < 0.01) against all strains. The data demonstrate that [Lys-8] ranatuerin-1 shows potential as a candidate for drug development.  相似文献   

3.
Escherichia coli B glutathione synthetase is composed of four identical subunits; each subunit contains 4 cysteine residues (Cys-122, -195, -222, and -289). We constructed seven different mutant enzymes containing 3, 2, or no cysteine residues/subunit by replacement of cysteine codons with those of alanine in the gsh II gene using site-directed mutagenesis. Three mutant enzymes, Ala289, Ala222/289, Cys-free (Ala122/195/222/289), in which cysteine at residue 289 was replaced with alanine, were not inactivated by 5,5'-dithiobis(2-nitrobenzoate) (DTNB), while the other four mutants retaining Cys-289 were inactivated at the wild-type rate. From these selective inactivations of mutant enzymes by DTNB, the sulfhydryl group modified by DTNB was unambiguously identified as Cys-289. In this way, Cys-289 was found to be also a target of modification with 2-nitrothiocyanobenzoate and N-ethylmaleimide, while Cys-195 was of p-chloromercuribenzoate. These results suggest that both Cys-195 and Cys-289 were not essential for the activity of the glutathione synthetase, but chemical modification of either one of the two sulfhydryl groups resulted in complete loss of the activity. Replacement of Cys-122 to Ala-122 enhanced the reactivity of Cys-289 with sulfhydryl reagents.  相似文献   

4.
Previous analysis of a naturally occurring C1 inhibitor P2 mutant (Ala(443)-->Val) indicated a role for P2 in specificity determination. To define this role and that of other reactive center loop residues, a number of different amino acids were introduced at P2, as well as at P6 (Ala(439)) and P8'/9' (Gln(452)Gln(453)). Ala(439)-->Val is a naturally occurring mutant observed in a patient with hereditary angioedema. Previous data suggested that Gln(452)Gln(453) might be a contact site for C1s. Reactivity of the inhibitors toward target (C1s, C1r, kallikrein, beta factor XIIa, and plasmin) and nontarget proteases (alpha-thrombin and trypsin) were studied. Substitution of P2 with bulky or charged residues resulted in decreased reactivity with all target proteases. Substitution with residues with hydrophobic or polar side chains resulted in decreased reactivity with some proteases, but in unaltered or increased reactivity with others. Second order rate constants for the reaction with C1s were determined for the mutants with activities most similar to the wild-type protein. The three P2 mutants showed reductions in rate from 3.35 x 10(5) M(-1)s(-1) for the wild type to 1.61, 1.29, and 0.63 x 10(5) for the Ser, Thr, and Val mutants, respectively. In contrast, the Ala(439)-->Val and the Gln(452)Gln(453)-->Ala mutants showed little difference in association rates with C1s, in comparison with the wild-type inhibitor. The data confirm the importance of P2 in specificity determination. However, the P6 position appears to be of little, if any, importance. Furthermore, it appears unlikely that Gln(452)Gln(453) comprise a portion of a protease contact site within the inhibitor.  相似文献   

5.
In this study we have examined the roles of endogenous cysteine residues in the rat brain K(+)-dependent Na(+)/Ca(2+) exchanger protein, NCKX2, by site-directed mutagenesis. We found that mutation of Cys-614 or Cys-666 to Ala inhibited expression of the exchanger protein in HEK-293 cells, but not in an in vitro translation system. We speculated that Cys-614 and Cys-666 might form an extracellular disulfide bond that stabilized protein structure. Such an arrangement would place the C terminus of the exchanger outside the cell, contrary to the original topological model. This hypothesis was tested by adding a hemagglutinin A epitope to the C terminus of the protein. The hemagglutinin A epitope could be recognized with a specific antibody without permeabilization of the cell membrane, supporting an extracellular location for the C terminus. Additionally, the exchanger molecule could be labeled with biotin maleimide only following extracellular application of beta-mercaptoethanol. Surprisingly, mutation of Cys-395, located in the large intracellular loop, to Ala, prevented reduction-dependent labeling of the protein. The activity of wild-type exchanger, but not the Cys-395 --> Ala mutant, was stimulated after application of beta-mercaptoethanol. Co-immunoprecipitation experiments demonstrated self-association between wild-type and FLAG-tagged exchanger proteins that could not be inhibited by Cys-395 --> Ala mutation. These results suggest that NCKX2 associates as a dimer, an interaction that does not require, but may be stabilized by, a disulfide linkage through Cys-395. This linkage, perhaps by limiting protein mobility along the dimer interface, reduces the transport activity of NCKX2.  相似文献   

6.
Squalene epoxidase (SE) (EC 1.14.99.7) is a flavin-requiring, non-cytochrome P-450 oxidase that catalyzes the conversion of squalene to (3S)-2,3-oxidosqualene. Photolabeling and site-directed mutagenesis were performed on recombinant rat SE (rrSE) to elucidate the location and roles of active-site residues important for catalysis. Two new benzophenone-containing analogs of NB-598, a nanomolar inhibitor of vertebrate SE, were synthesized in tritium-labeled form. These photoaffinity analogs (PDA-I and PDA-II) became covalently attached to SE when irradiated at 360 nm. Lys-C digestion and HPLC purification of [3H]PDA-I-labeled rrSE resulted in isolation of a single major peptide. MALDI-TOF mass spectrometry of this peptide indicated a covalent adduct between PDA-I and a tripeptide, Asp-Ile-Lys, beginning at Asp-426 of rat SE. Based on the labeling results, three mutant constructs were made. First, the D426A and K428A constructs showed a 5- to 8-fold reduction in SE activity compared with wild-type enzyme, while little change was observed in the I427A mutant. Second, a set of five mutant constructs was prepared for the conserved region based on the structure of the flavoprotein p-hydroxybenzoate hydroxylase (PHBH). Compared with wild-type, D284A and D407A showed less than 25% SE activity. This reduction also appeared to correlate with reduced affinity of the mutant proteins for FAD. Finally, each of the seven Cys residues of rrSE were individually mutated to Ala. Three Cys substitutions had no effect on SE activity, and substitutions at Cys-500 and Cys-533 showed a 50% lower SE activity. Mutations at Cys-490 and Cys-557 produced proteins with negligible SE activity, implicating these residues as being either structurally or catalytically essential. Chemical modification of wildtype and Cys mutants with a thiol-modifying reagent support the existence of a disulfide bond between Cys-490 and Cys-557.  相似文献   

7.
8.
In order to elucidate the role of particular amino acid residues in the catalytic activity and conformational stability of human aldolases A and B [EC 4.1.2.13], the cDNAs encoding these isoenzyme were modified using oligonucleotide-directed, site-specific mutagenesis. The Cys-72 and/or Cys-338 of aldolase A were replaced by Ala and the COOH-terminal Tyr of aldolases A and B was replaced by Ser. The three mutant aldolases A thus prepared, A-C72A, A-C338A, and A-C72,338A, were indistinguishable from the wild-type enzyme with respect to general catalytic properties, while the replacement of Tyr-363 by Ser in aldolase A (A-Y363S) resulted in decreases of the Vmax of the fructose-1, 6-bisphosphate (FDP) cleavage reaction, activity ratio of FDP/fructose-1-phosphate (F1P), and the Km values for FDP and F1P. The wild-type and all the mutant aldolase A proteins exhibited similar thermal stabilities. In contrast, the mutant aldolase A proteins were more stable than the wild-type enzyme against tryptic and alpha-chymotryptic digestions. Based upon these results it is concluded that the strictly conserved Tyr-363 of human aldolase A is required for the catalytic function with FDP as the substrate, while neither Cys-72 nor Cys-338 directly takes part in the catalytic function although the two Cys residues may be involved in maintaining the correct spatial conformation of aldolase A. Replacement of Tyr-363 by Ser in human aldolase B lowered the Km value for FDP appreciably and also diminished the stability against elevated temperatures and tryptic digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In a previous work, chemical modification of Cys-238 of Escherichia coli Pfk-2 raised concerns on the importance of the dimeric state of Pfk-2 for enzyme activity, whereas modification of Cys-295 impaired the enzymatic activity and the MgATP-induced tetramerization of the enzyme. The results presented here demonstrate that the dimeric state of Pfk-2 is critical for the stability and the activity of the enzyme. The replacement of Cys-238 by either Ala or Phe shows no effect on the kinetic parameters, allosteric inhibition, dimer stability and oligomeric structure of Pfk-2. However, the mutation of Cys-295 by either Ala or Phe provokes a decrease in the k(cat) value and an increment in the K(m) values for both substrates. We suggest that the Cys-295 residue participates in intersubunit interactions in the tetramer since the Cys-295-Phe mutant exhibits higher tetramer stability, which in turn results in an increase in the fructose-6-P concentration required for the reversal of the MgATP inhibition relative to the wild type enzyme.  相似文献   

10.
In Saccharomyces cerevisiae, as in higher eucaryotes, cyclic AMP (cAMP)-dependent protein kinase is a tetramer composed of two catalytic (C) subunits and two regulatory (R) subunits. In the absence of cAMP, the phosphotransferase activity of the C subunit is inhibited by the tight association with R. Mutation of Thr-241 to Ala in the C1 subunit of S. cerevisiae reduces the affinity of this subunit for the R subunit approximately 30-fold and results in a monomeric cAMP-independent C subunit. The analogous residue in the mammalian C subunit is known to be phosphorylated. Peptide maps of in vivo 32P-labeled wild-type C1 and mutant C1(Ala241) suggest that Thr-241 is phosphorylated in yeast cells. Substituting Thr-241 with either aspartate or glutamate partially restored affinity for the R subunit. Uncharged and positively charged residues substituted at this site resulted in C subunits that failed to associate with the R subunit. Replacement with the phosphorylatable residue serine resulted in a C subunit with wild-type affinity for the R subunit. Analysis of this protein revealed that it appears to be phosphorylated on Ser-241 in vivo. These data suggest that the interaction between R and C involves a negatively charged phosphothreonine at position 241 of yeast C1, which can be mimicked by either aspartate, glutamate, or phosphoserine.  相似文献   

11.
Complement components C3, C4, and C5 are members of the thioester-containing alpha-macroglobulin protein superfamily. Within this superfamily, a unique feature of the complement proteins is a 150-residue-long C-terminal extension of their alpha-subunits that harbors three internal disulfide bonds. Previous reports have suggested that this is an independent structural module, homologous to modules found in other proteins, including netrins and tissue inhibitors of metalloproteinases. Because of its distribution, this putative module has been named both C345C and NTR. To assess the structures of these segments of the complement proteins, their relationships with other domains, and activities as independent structures, we expressed C345C from C3 and C5 in a bacterial strain that permits cytoplasmic disulfide bond formation. Affinity purification directly from cell lysates yielded recombinant C3- and C5-C345C with properties consistent with multiple intramolecular disulfide bonds and high beta-sheet contents. rC5-, but not rC3-C345C inhibited complement hemolytic activity, and surface plasmon resonance studies revealed that rC5-C345C binds to complement components C6 and C7 with dissociation constants of 10 and 3 nM, respectively. Our results provide strong evidence that this binding corresponds to the previously described reversible binding of C5 to C6 and C7, and taken together with earlier work, indicate that the C5-C345C module interacts directly with the factor I modules in C6 and C7. The high binding affinities suggest that complexes composed of C5 bound to C6 or C7 exist in plasma before activation and may facilitate assembly of the complement membrane attack complex.  相似文献   

12.
All pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases contain an unusual disulfide ring formed between adjacent cysteine residues. A mutant enzyme that is lacking this structure was generated by replacing Cys105 and Cys106 with Ala in quinoprotein ethanol dehydrogenase (QEDH) from Pseudomonas aeruginosa ATCC17933. Heterologously expressed quinoprotein ethanol dehydrogenase in which Cys-105 and Cys-106 have been replaced by Ala (Cys105Ala/Cys106Ala apo-QEDH) was successfully converted to enzymatic active holo-enzyme by incorporation of its cofactor PQQ in the presence of Ca2+. The enzymatic activity of the mutant enzyme in the artificial dye test with N-methylphenazonium methyl sulfate (PMS) and 2,6-dichlorophenol indophenol (DCPIP) at pH 9 did not depend on an activating amine which is essential for wild type activity under these conditions. The mutant enzyme showed increased Michaelis constants for primary alcohols, while the affinity for the secondary alcohol 2-propanol was unaltered. Surprisingly, for all substrates tested the specific activity of the mutant enzyme in the artificial dye test was higher than that found for wild type QEDH. On the contrary, in the ferricyanide test with the natural electron acceptor cytochrome c 550 the activity of mutant Cys105Ala/Cys106Ala was 15-fold lower than that of wild type QEDH. We demonstrate for the first time unambiguously that the unusual disulfide ring is essential for efficient electron transfer at pH 7 from QEDH to its natural electron acceptor cytochrome c 550.  相似文献   

13.
P-glycoprotein (P-gp) is an ATP-dependent drug pump that contains two nucleotide-binding domains (NBDs). Disulfide cross-linking analysis was done to determine if the two NBDs are close to each other. Residues within or close to the Walker A (GNSGCGKS in NDB1 and GSSGCGKS in NBD2) sequences for nucleotide binding were replaced with cysteine, and the mutant P-gps were subjected to oxidative cross-linking. Cross-linking was detected in two mutants, G427C(NBD1)/Cys-1074(NBD2) and L439C(NBD1)/Cys-1074(NBD2), because the cross-linked proteins migrated slower in SDS gels. Mutants G427C(NBD1)/Cys-1074(NBD2) and L439C(NBD1)/Cys-1074(NBD2) retained 10% and 82%, respectively, of the drug-stimulated ATPase activity relative to that of Cys-less P-gp. The cross-linking properties of the more active mutant L439C(NBD1)/Cys-1074(NBD2) were then studied. Cross-linking was reversed by addition of dithiothreitol and could be prevented by pretreatment of the mutant with N-ethylmaleimide. Cross-linking was also inhibited by MgATP, but not by the verapamil. Oxidative cross-linking of mutant L439C(NBD1)/Cys-1074(NBD2) resulted in almost complete inhibition of drug-stimulated ATPase activity. More than 60% of the drug-stimulated ATPase activity, however, was recovered after treatment with dithiothreitol. The results indicate that the two predicted nucleotide-binding sites are close to each other and that cross-linking inhibits ATP hydrolysis.  相似文献   

14.
15.
Here the functional and structural importance of interactions involving the 240s loop of the catalytic chain for the stabilization of the T state of aspartate transcarbamoylase were tested by replacement of Lys-244 with Asn and Ala. For the K244A and K244N mutant enzymes, the aspartate concentration required to achieve half-maximal specific activity was reduced to 8.4 and 4.0 mm, respectively, as compared with 12.4 mM for the wild-type enzyme. Both mutant enzymes exhibited dramatic reductions in homotropic cooperativity and the ability of the heterotropic effectors to modulate activity. Small angle x-ray scattering studies showed that the unligated structure of the mutant enzymes, and the structure of the mutant enzymes ligated with N-phosphonacetyl-L-aspartate, were similar to that observed for the unligated and N-phosphonacetyl-L-aspartateligated wild-type enzyme. A saturating concentration of carbamoyl phosphate alone has little influence on the small angle x-ray scattering of the wild-type enzyme. However, carbamoyl phosphate was able to shift the structure of the two mutant enzymes dramatically toward R, establishing that the mutations had destabilized the T state of the enzyme. The x-ray crystal structure of K244N enzyme showed that numerous local T state stabilizing interactions involving 240s loop residues were lost. Furthermore, the structure established that the mutation induced additional alterations at the subunit interfaces, the active site, the relative position of the domains of the catalytic chains, and the allosteric domain of the regulatory chains. Most of these changes reflect motions toward the R state structure. However, the K244N mutation alone only changes local conformations of the enzyme to an R-like structure, without triggering the quaternary structural transition. These results suggest that loss of cooperativity and reduction in heterotropic effects is due to the dramatic destabilization of the T state of the enzyme by this mutation in the 240s loop of the catalytic chain.  相似文献   

16.
Methionine γ‐lyse (MGL) catalyzes the α, γ‐elimination of l ‐methionine and its derivatives as well as the α, β‐elimination of l ‐cysteine and its derivatives to produce α‐keto acids, volatile thiols, and ammonia. The reaction mechanism of MGL has been characterized by enzymological studies using several site‐directed mutants. The Pseudomonas putida MGL C116H mutant showed drastically reduced degradation activity toward methionine while retaining activity toward homocysteine. To understand the underlying mechanism and to discern the subtle differences between these substrates, we analyzed the crystal structures of the reaction intermediates. The complex formed between the C116H mutant and methionine demonstrated that a loop structure (Ala51–Asn64) in the adjacent subunit of the catalytic dimer cannot approach the cofactor pyridoxal 5′‐phosphate (PLP) because His116 disrupts the interaction of Asp241 with Lys240, and the liberated side chain of Lys240 causes steric hindrance with this loop. Conversely, in the complex formed between C116H mutant and homocysteine, the thiol moiety of the substrate conjugated with PLP offsets the imidazole ring of His116 via a water molecule, disrupting the interaction of His116 and Asp241 and restoring the interaction of Asp241 with Lys240. These structural data suggest that the Cys116 to His mutation renders the enzyme inactive toward the original substrate, but activity is restored when the substrate is homocysteine due to substrate‐assisted catalysis.  相似文献   

17.
Human organic anion transporter hOAT1 plays critical roles in the body disposition of environmental toxins and clinically important drugs. In the present study, we examined the role of the C terminus of hOAT1 in its function. Combined approaches of cell surface biotinylation and transport analysis were employed for such purposes. It was found that deletion of the last 15 amino acids (residues 536-550) or the last 30 amino acids (residues 521-550) had no significant effect on transport activity. However, deletion of the entire C terminus (residues 506-550) completely abolished transport activity. Alanine scanning mutagenesis within the region of amino acids 506-520 led to the discovery of two critical amino acids: Glu-506 and Leu-512. Substitution of negatively charged Glu-506 with neutral amino acids alanine or glutamine resulted in complete loss of transport activity. However, such loss of transport activity could be rescued by substitution of Glu-506 with another negatively charged amino acid aspartic acid, suggesting the importance of negative charge at this position for maintaining the correct tertiary structure of the transporter, possibly by forming a salt bridge with a positively charged amino acid. Substitution of Leu-512 with amino acids carrying progressively smaller side chains including isoleucine, valine, and alanine resulted in mutants (L512I, L512V, and L512A) with increasingly impaired transport activity. However, the cell surface expression of these mutants was not affected. Kinetic analysis of mutant L512V revealed that the reduced transport activity of this mutant resulted mainly from a reduced maximum transport velocity Vmax without affecting the binding affinity (1/Km) of the transporter for its substrates, suggesting that the size of the side chain at position 512 critically affects transporter turnover number. Together, our results are the first to highlight the central role of the C terminus of hOAT1 in the function of this transporter.  相似文献   

18.
Mutations in the gene of the G protein-coupled vasopressin V2 receptor (V2 receptor) cause X-linked nephrogenic diabetes insipidus (NDI). Most of the missense mutations on the extracellular face of the receptor introduce additional cysteine residues. Several groups have proposed that these residues might disrupt the conserved disulfide bond of the V2 receptor. To test this hypothesis, we first calculated a structure model of the extracellular receptor domains. The model suggests that the additional cysteine residues may form a second disulfide bond with the free, nonconserved extracellular cysteine residue Cys-195 rather than impairing the conserved bond. To address this question experimentally, we used the NDI-causing mutant receptors G185C and R202C. Their Cys-195 residues were replaced by alanine to eliminate the hypothetical second disulfide bonds. This second site mutation led to functional rescue of both NDI-causing mutant receptors, strongly suggesting that the second disulfide bonds are indeed formed. Furthermore we show that residue Cys-195, which is sensitive to "additional cysteine" mutations, is not conserved among the V2 receptors of other species and that the presence of an uneven number of extracellular cysteine residues, as in the human V2 receptor, is rare among class I G protein-coupled receptors.  相似文献   

19.
Dihydrolipoamide succinyltransferase (E2o) is the structural and catalytic core of the 2-oxoglutarate dehydrogenase (OGDH) complex. The cDNA encoding porcine E2o (PE2o) has been cloned. The PE2o cDNA spans 2547 bases encoding a presequence (68 amino-acid residues) and a mature protein (387 residues, Mr = 41 534). Recombinant porcine E2o (rPE2o) (residues 1-387), C- and N-terminal truncated PE2os, and site-directed mutant PE2os were overexpressed in Escherichia coli via the expression vector pET-11d and purified. The succinyltransferase activity of the rPE2o was about 2.2-fold higher than that of the native PE2o. Electron micrographs of the rPE2o negatively stained showed a cube-like structure very similar to that of the native PE2o. Deletion of five amino-acid residues from the C-terminus resulted in a complete loss of both enzymatic activity and formation of the cube-like structure, but the deletion of only the last two residues had no effect on either function, suggesting the important roles of the C-terminal leucine triplet (Leu383-384-385). Substitution of Ser306 with Ala, and Asp362 with Asn, Glu or Ala in the putative active site, and Leu383-384-385 with Ala or Asp abolished both functions. Substitution of His358 with Cys resulted in an 8.5-fold reduction in kcat, with little change in Km values for dihydrolipoamide and succinyl-CoA. However, self-assembly was not affected. These data indicate that Ser306, Asp362 and the Leu383-384-385 triplet are important residues in both the self-assembly and catalytic mechanism of PE2o.  相似文献   

20.
Based on predictions of the structure of proteinase 3C of poliovirus, mutations have been made at residues that are supposed to constitute the catalytic triad. Wild-type and mutant 3C were expressed in Escherichia coli, purified to homogeneity, and characterized by the ability to cleave a synthetic peptide substrate or an in vitro translated polypeptide consisting of part of the polyprotein of poliovirus. Additionally, the ability of autocatalytic processing of a precursor harboring wild-type or mutant 3C sequences was tested. Single substitutions of the residues His-40, Glu-71, and Cys-147 by Tyr, Gln, and Ser, respectively, resulted in an inactive enzyme. Replacement of Asp-85 by Asn resulted in an enzyme that was as active as wild-type enzyme in trans cleavage assays but whose autoprocessing ability was impaired. Our results are consistent with the proposal that residues His-40, Glu-71, and Cys-147 constitute the catalytic triad of poliovirus 3C proteinase. Furthermore, residue Asp-85 is not required for proper proteolytic activity despite being highly conserved between different picornaviruses. This indicates that Asp-85 might be involved in a different function of 3C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号