首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major stress protein, alpha-crystallin, functions as a chaperone. Site-directed mutagenesis has been used to identify regions of the protein necessary for chaperone function. In this work we have taken some of the previously described mutants produced and assessed their chaperone function by both a traditional heat-induced aggregation method at elevated temperature and using enzyme methods at 37 degrees C. In general the different assays gave parallel results indicating that the same property is being measured. Discrepancies were explicable by the heat lability of some mutants. Most mutants had full chaperone function showing the robust nature of alpha-crystallin. A mutant corresponding to a minor component of rodent alpha A-crystallin, alpha Ains-crystallin, had decreased chaperone function. Decreased chaperone function was also found for human Ser139--> Arg, Thr144-->Arg, Ser59-->Ala mutants of alpha B-crystallin and double mutants Ser45-->Ala/Ser59-->Ala, Lys103--> Leu/His104-->Ile, and Glu110-->His/His111-->Glu. A mutant Phe27-->Arg that was the subject of previous controversy was shown to be fully active at physiological temperatures.  相似文献   

2.
The thermodynamic contribution of a stacking interaction between Tyr85 in MS2 coat protein and a single-stranded pyrimidine in its RNA binding site has been examined. Mutation of Tyr85 to Phe, His, Cys, Ser and Ala decreased the RNA affinity by 1-3 kcal/mol under standard binding conditions. Since the Phe, His and Cys 85 proteins formed UV photocrosslinks with iodouracil-containing RNA at the same rate as the wild-type protein, the mutant proteins interact with RNA in a similar manner. The pH dependence of KD for the Phe and His proteins differs substantially from the wild-type protein, suggesting that the titration of position 85 contributes substantially to the binding properties. Experiments with specifically substituted phosphorothioate RNAs confirm a hydrogen bond between the hydroxyl group of tyrosine and a phosphate predicted by the crystal structure.  相似文献   

3.
The structures of three mutants of bacteriophage T4 lysozyme selected using a screen designed to identify thermostable variants are described. Each of the mutants has a substitution involving threonine. Two of the variants, Thr 26-->Ser (T26S) and Thr 151-->Ser (T151S), have increased reversible melting temperatures with respect to the wild-type protein. The third, Ala 93-->Thr (A93T), has essentially the same stability as wild type. Thr 26 is in the wall of the active-site cleft. Its replacement with serine results in the rearrangement of nearby residues, most notably Tyr 18, suggesting that the increase in stability may result from the removal of strain. Thr 151 in the wild-type structure is far from the active site and appears to sterically prevent the access of solvent to a preformed binding site. In the mutant, the removal of the methyl group allows access to the solvent binding site and, in addition, the Ser 151 hydroxyl rotates to a new position so that it also contributes to solvent binding. Residue 93 is in a highly exposed site on the surface of the molecule, and presumably is equally solvent exposed in the unfolded protein. It is, therefore, not surprising that the substitution Ala 93-->Thr does not change stability. The mutant structures show how chemically similar mutations can have different effects on both the structure and stability of the protein, depending on the structural context. The results also illustrate the power of random mutagenesis in obtaining variants with a desired phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In order to identify amino acids directly involved in progesterone binding to rabbit uteroglobin we have mutated Phe 6, Tyr 21 and Thr 60 by site-directed mutagenesis of the uteroglobin cDNA. These residues have been postulated previously to participate in progesterone binding. High-level expression of the mutated uteroglobin cDNAs in Escherichia coli yields recombinant protein mutants that, like natural uteroglobin, form stable dimers, suggesting that the tertiary structure of the protein has not been altered. Substitution of Phe 6 by Ser or Ala does not change the progesterone binding characteristics. In contrast, replacement of Tyr 21 by Phe or Ala, drastically decreases progesterone binding. In addition, replacement of Thr 60 by Ala reduces the affinity for progesterone by a factor of three. These data suggest a direct interaction of progesterone with these two amino acids and support the idea of direct hydrogen bonding of the carbonyl (C3 and C20) of progesterone with the hydroxyl groups of Tyr 21 and Thr 60, respectively.  相似文献   

5.
6.
Mutant proteins with altered properties can be useful probes for investigating structure, ligand binding sites, mechanisms of action, and physicochemical attributes of the corresponding wild-type proteins of interest. In this report, we illuminate properties of mutants of the potent HIV-inactivating protein, cyanovirin-N (CV-N), selected by construction of a mutant library by error-prone polymerase chain reaction and affinity-based screening using T7 phage display technology. After three rounds of biopanning, two phage-displayed, one-point mutants of CV-N, Ser52Pro and Ala77Thr, were isolated. After the elucidation of biological activities of the mutants displayed on phage as well as the Escherichia coli-expressed, purified mutant proteins, we subsequently subjected the mutants to analyses by native PAGE and size-exclusion chromatography. We found that the Ser52Pro mutant not only was active against HIV but also existed exclusively as a dimer in solution. This was in marked contrast to the wild-type CV-N, which exists in solution predominantly as the monomer. The Ser52Pro mutant provides a novel model for further investigations of the folding mechanism as well as structure-activity requirements for CV-N's antiviral properties.  相似文献   

7.
Pharaonis halorhodopsin (phR) is an inward light-driven chloride ion pump in Natronobacterium pharaonis. In order to clarify the roles of the Ser130(phR) and Thr126(phR) residues, which correspond to Ser115(shR) and Thr111(shR) of salinarum hR (shR), with regard to their Cl(-)binding affinity and the photocycle, the wild-type phR, and S130 and T126 mutants were expressed in Escherichia coli cells. The photocycles of the wild-type phR, and S130 and T126 mutants were investigated in the presence of 1 M NaCl. Based on results of kinetic analysis involving singular value decomposition and global fitting, typical photointermediates K, L and O were identified, and the kinetic constants of decay or formation varied depending on the mutant. The photocycle scheme was linear for the wild-type phR, and S130C, S130T and T126V mutants. On the other hand, the S130A mutant showed a branched pathway between the L-hR and L-O steps. The present study revealed the following two facts with respect to the Ser130(phR) residue: 1) The OH group of this residue is important for Cl(-) ion binding next to the Schiff base nitrogen, and 2) replacement of an Ala residue, which is unable to form a hydrogen bond, results in a branched photocycle. The implication of this branching was discussed.  相似文献   

8.
The coat protein of the RNA bacteriophage MS2 is a specific RNA binding protein that represses translation of the viral replicase gene during the infection cycle. As an approach to characterizing the RNA-binding site of coat protein we have isolated a series of coat mutants that suppress the effects of a mutation in the translational operator. Each of the mutants exhibits a super-repressor phenotype, more tightly repressing both the mutant and wild-type operators than does the wild-type protein. The variant coat proteins were purified and subjected to filter binding assays to determine their affinities for the mutant and wild-type operators. Each protein binds the operators from 3 to 7.5-fold more tightly than normal coat protein. The amino acid substitutions seem to extend the normal binding site by introducing new interactions with RNA.  相似文献   

9.
Human lysozyme is a monomeric secretory protein composed of 130 amino acid residues, with four intramolecular disulfide bonds and no oligosaccharides. In this study, a mutant protein, [Ala128] lysozyme, which cannot fold because it lacks a disulfide bond, Cys6-Cys128, was expressed in mouse fibroblasts and was found to be mostly degraded in the cells, whereas the control wild-type lysozyme was quantitatively secreted into the media. The degradation of [Ala128]lysozyme was independent of the transport from the endoplasmic reticulum to the Golgi apparatus. The degradation was greatly inhibited by incubation of cells at 15 degrees C, but was minimally affected by treatment of cells with the lysosomotropic agent, chloroquine, implying a non-lysosomal process. Additional mutations (Gly48-->Ser or Met29-->Thr) were created to make asparagine-linked (N-linked) glycosylation site in the [Ala128]lysozyme, and the resultant double mutants, [Ser48, Ala128]lysozyme and [Thr29, Ala128]lysozyme, were analyzed with respect to their intracellular degradation. These mutant proteins were susceptible to N-linked glycosylation, and were degraded in a similar manner to that of [Ala128] lysozyme, except that the onset of degradation of [Ser48, Ala128]lysozyme and [Thr29, Ala128] lysozyme, but not of [Ala128]lysozyme, was preceded by a lag period of up to 60 min. Furthermore, the degradative double mutants, [Ser48, Ala128]lysozyme and [Thr29, Ala128]lysozyme, were glycosylated post-translationally as well as co-translationally. These observations suggest that there is some interaction between the mechanisms of glycosylation and degradation.  相似文献   

10.
The cdc2 protein kinase is an important regulatory protein for both meiosis and mitosis. Previously, we demonstrated that simultaneous mutation of Thr14-->Ala14 and Tyr15-->Phe15 in the Xenopus cdc2 protein results in an activated cdc2 mutant that induces maturation in resting oocytes. In addition, we confirmed the importance of the positive regulatory phosphorylation site, Thr161, by demonstrating that cdc2 mutants containing additional mutations of Thr161-->Ala161 or Glu161 are inactive in the induction of oocyte maturation. Here, we have analyzed the importance of an additional putative cdc2 phosphorylation site,Ser277. Single mutation of Ser277-->Asp277 or Ala277 had no effect on activity, and these mutants were unable to induce Xenopus oocyte maturation. However, the double mutant Ala161/Asp277 was capable of inducing oocyte maturation, suggesting that mutation of Ser277-->Asp277 could compensate for the mutation of Thr161-->Ala161. The Asp277 mutation could also compensate for the Ala161 mutation in the background of the activating mutations Ala14/Phe15. Although mutants containing the compensatory Ala161 and Asp277 mutations were capable of inducing oocyte maturation, these mutant cdc2 proteins lacked detectable in vitro kinase activity. Tryptic phosphopeptide mapping of mutant cdc2 protein and comparison with in vitro synthesized peptides indicated that Ser277 is not a major site of phosphorylation in Xenopus oocytes; however, we cannot rule out the possibility of phosphorylation at this site in a biologically active subpopulation of cdc2 molecules. The data presented here, together with prior reports of Ser277 phosphorylation in somatic cells, suggest an important role for Ser277 in the regulation of cdc2 activity. The regulatory role of Ser277 most likely involves its indirect effects on the nearby residue Arg275, which participates in a structurally important ion pair with Glu173, which lies in the same loop as Thr161 in the cdc2 protein.  相似文献   

11.
Overexpression of phospholemman (PLM) in normal adult rat cardiac myocytes altered contractile function and cytosolic Ca2+ concentration ([Ca2+]i) homeostasis and inhibited Na+/Ca2+ exchanger (NCX1). In addition, PLM coimmunoprecipitated and colocalized with NCX1 in cardiac myocyte lysates. In this study, we evaluated whether the cytoplasmic domain of PLM is crucial in mediating its effects on contractility, [Ca2+]i transients, and NCX1 activity. Canine PLM or its derived mutants were overexpressed in adult rat myocytes by adenovirus-mediated gene transfer. Confocal immunofluorescence images using canine-specific PLM antibodies demonstrated that the exogenous PLM or its mutants were correctly targeted to sarcolemma, t-tubules, and intercalated discs, with little to none detected in intracellular compartments. Overexpression of canine PLM or its mutants did not affect expression of NCX1, sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)-K(+)-ATPase, and calsequestrin in adult rat myocytes. A COOH-terminal deletion mutant in which all four potential phosphorylation sites (Ser62, Ser63, Ser68, and Thr69) were deleted, a partial COOH-terminal deletion mutant in which Ser68 and Thr69 were deleted, and a mutant in which all four potential phosphorylation sites were changed to alanine all lost wild-type PLM's ability to modulate cardiac myocyte contractility. These observations suggest the importance of Ser68 or Thr69 in mediating PLM's effect on cardiac contractility. Focusing on Ser68, the Ser68 to Glu mutant was fully effective, the Ser63 to Ala (leaving Ser68 intact) mutant was partially effective, and the Ser68 to Ala mutant was completely ineffective in modulating cardiac contractility, [Ca2+]i transients, and NCX1 currents. Both the Ser63 to Ala and Ser68 to Ala mutants, as well as PLM, were able to coimmunoprecipitate NCX1. It is known that Ser68 in PLM is phosphorylated by both protein kinases A and C. We conclude that regulation of cardiac contractility, [Ca2+]i transients, and NCX1 activity by PLM is critically dependent on Ser68. We suggest that PLM phosphorylation at Ser68 may be involved in cAMP- and/or protein kinase C-dependent regulation of cardiac contractility.  相似文献   

12.
G J Lee  B A McFadden 《Biochemistry》1992,31(8):2304-2308
Site-directed mutagenesis was used to change Ser376 in the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase from the cyanobacterium Anacystis nidulans to Cys, Thr, or Ala. When expressed in Escherichia coli and purified, the mutant enzymes exhibited carboxylase activities that were reduced by 99% or more with respect to the activity of the wild-type enzyme. The Km values for ribulose bisphosphate at pH 8.0, 30 degrees C, were elevated from 46 microM for wild-type enzyme to 287, 978, and 81 microM for mutants in which Cys, Thr, or Ala, respectively, replaced Ser376. The Cys and Thr variants were almost devoid of oxygenase activity whereas the Ala variant had 16% as much oxygenase as wild-type enzyme, suggesting that this mutation had greatly elevated the oxygenase:carboxylase ratio.  相似文献   

13.
The interaction between the MS2 bacteriophage coat protein homodimer and its cognate RNA hairpin is facilitated by 21 different RNA-protein contacts. In one of these contacts, the 2'-hydroxyl group at ribose -5 of the RNA acts as a hydrogen bond donor to Glu63 in one subunit of the protein. Previous experiments showed that substitution of ribose -5 with deoxyribose resulted in a 24-fold decrease in binding affinity between RNA and protein. Using a protein where the two MS2 monomers were fused to increase stability, the contribution of this contact to the overall binding affinity was investigated by site-directed mutagenesis. When Glu63 was substituted with glutamine, aspartate, or alanine, the binding affinity of the hairpin for the protein was weakened by 12 to 100-fold, similar to that observed with deoxyribose at position -5. However, the specificity of the three mutant proteins for RNAs with various modifications at the 2'-position of ribose -5 differed dramatically. While the Glu63Asp protein resembled the wild-type protein in preferring the 2'-hydroxyl group over a proton or a bulky 2'-substituent, both the Glu63Ala and Glu63Gln proteins preferred bulky 2'-substituents over the 2'-hydroxyl group by more than 100-fold. These experiments emphasize the ease with which the specificity of a protein-nucleic acid interaction can be changed at thermodynamically important sites.  相似文献   

14.
The mammalian mitochondrial NADP-dependent isocitrate dehydrogenase is a citric acid cycle enzyme and an important contributor to cellular defense against oxidative stress. The Mn(2+)-isocitrate complex of the porcine enzyme was recently crystallized; its structure indicates that Ser(95), Asn(97), and Thr(78) are within hydrogen-bonding distance of the gamma-carboxylate of enzyme-bound isocitrate. We used site-directed mutagenesis to replace each of these residues by Ala and Asp. The wild-type and mutant enzymes were expressed in Escherichia coli and purified to homogeneity. All the enzymes retain their native dimeric structures and secondary structures as monitored by native gel electrophoresis and circular dichroism, respectively. V(max) of the three alanine mutants is decreased to 24%-38% that of wild-type enzyme, with further decreases in the aspartate mutants. For T78A and S95A mutants, the major changes are the 10- to 100-fold increase in the K(m) values for isocitrate and Mn(2+). The results suggest that Thr(78) and Ser(95) function to strengthen the enzyme's affinity for Mn(2+)-isocitrate by hydrogen bonding to the gamma-carboxylate of isocitrate. For the Asn(97) mutants, the K(m) values are much less affected. The major change in the N97A mutant is the increase in pK(a) of the ionizable metal-liganded hydroxyl of enzyme-bound isocitrate from 5.23 in wild type to 6.23 in the mutant enzyme. The hydrogen bond between Asn(97) and the gamma-carboxylate of isocitrate may position the substrate to promote a favorable lowering of the pK of the enzyme-isocitrate complex. Thus, Thr(78), Ser(95), and Asn(97) perform important but distinguishable roles in catalysis by porcine NADP-specific isocitrate dehydrogenase.  相似文献   

15.
Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.  相似文献   

16.
Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.  相似文献   

17.
The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCdelta on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCdelta-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCdelta catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.  相似文献   

18.
S A Berger  P R Evans 《Biochemistry》1992,31(38):9237-9242
Six active site mutants of Escherichia coli phosphofructokinase have been constructed and characterized using steady-state kinetics. All but one of the mutants (ES222) have significantly lower maximal activity, implicating these residues in the catalytic process. Replacement of Asp127, the key catalytic residue in the forward reaction with Glu, results in an enzyme with wild-type cooperative and allosteric behavior but severely decreased Fru6P binding. Replacement of the same residue with Tyr abolishes cooperativity while retaining sensitivity to allosteric inhibition and activation. Thus, this mutant has uncoupled homotropic from heterotropic allostery. Mutation of Asp103 to Ala results in an enzyme which retains wild-type Fru6P-binding characteristics with reduced activity. GDP, which allosterically activates the wild-type enzyme, acts as a mixed inhibitor for this mutant. Mutation of Thr125 to Ala and Asp129 to Ser produces mutants with impaired Fru6P binding and decreased cooperativity. In the presence of the activator GDP, both these mutants display apparent negative cooperativity. In addition, ATP binding is now allosterically altered by GDP. These results extend the number of active site residues known to participate in the catalytic process and help to define the mechanisms behind catalysis and homotropic and heterotropic allostery.  相似文献   

19.
We have determined the structures of complexes between the phage MS2 coat protein and variants of the replicase translational operator in order to explore the sequence specificity of the RNA–protein interaction. The 19-nt RNA hairpins studied have substitutions at two positions that have been shown to be important for specific binding. At one of these positions, –10, which is a bulged adenosine (A) in the stem of the wild-type operator hairpin, substitutions were made with guanosine (G), cytidine (C) and two non-native bases, 2-aminopurine (2AP) and inosine (I). At the other position, –7 in the hairpin loop, the native adenine was substituted with a cytidine. Of these, only the G-10, C-10 and C-7 variants showed interpretable density for the RNA hairpin. In spite of large differences in binding affinities, the structures of the variant complexes are very similar to the wild-type operator complex. For G-10 substitutions in hairpin variants that can form bulges at alternative places in the stem, the binding affinity is low and a partly disordered conformation is seen in the electron density maps. The affinity is similar to that of wild-type when the base pairs adjacent to the bulged nucleotide are selected to avoid alternative conformations. Both purines bind in a very similar way in a pocket in the protein. In the C-10 variant, which has very low affinity, the cytidine is partly inserted in the protein pocket rather than intercalated in the RNA stem. Substitution of the wild-type adenosine at position –7 by pyrimidines gives strongly reduced affinities, but the structure of the C-7 complex shows that the base occupies the same position as the A-7 in the wild-type RNA. It is stacked in the RNA and makes no direct contact with the protein.  相似文献   

20.
Three conserved serine residues (Ser193, Ser194, and Ser197) in transmembrane spanning region (TM) V of the D2 dopamine receptor have been mutated to alanine, individually and in combination, to explore their role in ligand binding and G protein coupling. The multiple Ser -->Ala mutations had no effect on the binding of most antagonists tested, including [3H]spiperone, suggesting that the multiple mutations did not affect the overall conformation of the receptor protein. Double or triple mutants containing an Ala197 mutation showed a decrease in affinity for domperidone, whereas Ala193 mutants showed an increased affinity for a substituted benzamide, remoxipride. However, dopamine showed large decreases in affinity (>20-fold) for each multiple mutant receptor containing the Ser193Ala mutation, and the high-affinity (coupled) state of the receptor (in the absence of GTP) could not be detected for any of the multiple mutants. A series of monohydroxylated phenylethylamines and aminotetralins was tested for their binding to the native and multiple mutant D2 dopamine receptors. The results obtained suggest that Ser193 interacts with the hydroxyl of S-5-hydroxy-2-dipropylaminotetralin (OH-DPAT) and Ser197 with the hydroxyl of R-5-OH-DPAT. We predict that Ser193 interacts with the hydroxyl of R-7-OH-DPAT and the 3-hydroxyl (m-hydroxyl) of dopamine. Therefore, the conserved serine residues in TMV of the D2 dopamine receptor are involved in hydrogen bonding interactions with selected antagonists and most agonists tested and also enable agonists to stabilise receptor-G protein coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号