首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Perkins SL  Martinsen ES  Falk BG 《Parasitology》2011,138(13):1664-1674
Systematics involves resolving both the taxonomy and phylogenetic placement of organisms. We review the advantages and disadvantages of the two kinds of information commonly used for such inferences--morphological and molecular data--as applied to the systematics of metazoan parasites generally, with special attention to the malaria parasites. The problems that potentially confound the use of morphology in parasites include challenges to consistent specimen preservation, plasticity of features depending on hosts or other environmental factors, and morphological convergence. Molecular characters such as DNA sequences present an alternative data source and are particularly useful when not all the parasite's life stages are present or when parasitaemia is low. Nonetheless, molecular data can bring challenges that include troublesome DNA isolation, paralogous gene copies, difficulty in developing molecular markers, and preferential amplification in mixed species infections. Given the differential benefits and shortcomings of both molecular and morphological characters, both should be implemented in parasite taxonomy and phylogenetics.  相似文献   

2.
What can DNA Tell us About the Cambrian Explosion?   总被引:1,自引:0,他引:1  
Molecular data is ideal for exploring deep evolutionary historybecause of its universality, stochasticity and abundance. Thesefeatures provide a means of exploring the evolutionary historyof all organisms (including those that do not tend to leavefossils), independently of morphological evolution, and withina statistical framework that allows testing of evolutionaryhypotheses. In particular, molecular data have an importantrole to play in examining hypotheses concerning the tempo andmode of evolution of animal body plans. Examples are given wheremolecular phylogenies have led to a re-examination of some fundamentalassumptions in metazoan evolution, such as the immutabilityof early developmental characters, and the evolvability of bauplancharacters. Molecular data is also providing a new and controversialtimescale for the evolution of animal phyla, pushing the majordivisions of the animal kingdom deep into the Precambrian. Therehave been many reasons to question the accuracy and precisionof molecular date estimates, such as the failure to accountfor lineage-specific rate variation and unreliable estimationof rates of molecular evolution. While these criticisms havebeen largely countered by recent studies, one problem has remaineda challenge: could temporal variation in the rate of molecularevolution, perhaps associated with "explosive" adaptive radiations,cause overestimation of diversification dates? Empirical evidencefor an effect of speciation rate, morphological evolution orecological diversification on rates of molecular evolution isexamined, and the potential for rate-variable methods for moleculardating are discussed.  相似文献   

3.
Molecular studies have contributed greatly to our understanding of evolutionary processes that act upon virtually every aspect of living organisms. However, these studies are limited with regard to extinct organisms, particularly those from the Mesozoic because fossils pose unique challenges to molecular workflows, and because prevailing wisdom suggests no endogenous molecular components can persist into deep time. Here, the power and potential of a molecular approach to Mesozoic fossils is discussed. Molecular methods that have been applied to Mesozoic fossils—including iconic, non‐avian dinosaurs— and the challenges inherent in such analyses, are compared and evaluated. Taphonomic processes resulting in the transition of living organisms from the biosphere into the fossil record are reviewed, and the possible effects of taphonomic alteration on downstream analyses that can be problematic for very old material (e.g., molecular modifications, limitations of on comparative databases) are addressed. Molecular studies applied to ancient remains are placed in historical context, and past and current studies are evaluated with respect to producing phylogenetically and/or evolutionarily significant data. Finally, some criteria for assessing the presence of endogenous biomolecules in very ancient fossil remains are suggested as a starting framework for such studies.  相似文献   

4.
Gräser Y  Scott J  Summerbell R 《Mycopathologia》2008,166(5-6):239-256
The dermatophytes are among the most frequently observed organisms in biomedicine, yet there has never been stability in the taxonomy, identification and naming of the approximately 25 pathogenic species involved. Since the identification of these species is often epidemiologically and ethically important, the difficulties in dermatophyte identification are a fruitful topic for modern molecular biological investigation, done in tandem with renewed investigation of phenotypic characters. Molecular phylogenetic analyses such as multilocus sequence typing have had to be tailored to accommodate differing the mechanisms of speciation that have produced the dermatophytes that are commonly seen today. Even so, some biotypes that were unambiguously considered species in the past, based on profound differences in morphology and pattern of infection, appear consistently not to be distinct species in modern molecular analyses. Most notable among these are the cosmopolitan bane of nails and feet, Trichophyton rubrum, and the endemic African agent of childhood tinea capitis, Trichophyton soudanense, which are effectively inseparable in all analyses. The molecular data require some reinterpretation of results seen in conventional phenotypic tests, but in most cases, phylogenetic insight is readily integrated with current laboratory testing procedures.  相似文献   

5.
Scleractinian corals, which include the architects of coral reefs, are found throughout the world's oceans and have left a rich fossil record over their 240 million year history. Their classification has been marked by confusion but recently developed molecular and morphological tools are now leading to a better understanding of the evolutionary history of this important group. Although morphological characters have been the basis of traditional classification in the group, they are relatively few in number. In addition, our current understanding of skeletal growth and homology is limited, and homoplasy is rampant, limiting the usefulness of morphological phylogenetics. Molecular phylogenetic hypotheses for the order, which have been primarily focused on reef-building corals, differ significantly from traditional classification. They suggest that the group is represented by two major lineages and do not support the monophyly of traditional suborders and most traditional families. It appears that once a substantial number of azooxanthellate taxa are included in molecular phylogenetic analyses, basal relationships within the group will be clearly defined. Understanding of relationships at lower taxonomic levels will be best clarified by combined analyses of morphological and molecular characters. Molecular phylogenies are being used to inform our understanding of the evolution of morphological characters in the Scleractinia. Better understanding of the evolution of these characters will help to integrate the systematics of fossil and extant taxa. We demonstrate how the combined use of morphological and molecular tools holds great promise for ending confusion in scleractinian systematics.  相似文献   

6.
Molecular motors, which use energy from ATP hydrolysis to take nanometer-scale steps with run-lengths on the order of micrometers, have important roles in areas such as transport and mitosis in living organisms. New techniques have recently been developed to measure these small movements at the single-molecule level. In particular, fluorescence imaging has contributed to the accurate measurement of this tiny movement. We introduce three single-molecule fluorescence imaging techniques which can find the position of a fluorophore with accuracy in the range of a few nanometers. These techniques are named after Hollywood animation characters: Fluorescence Imaging with One Nanometer Accuracy (FIONA), Single-molecule High-REsolution Colocalization (SHREC), and Defocused Orientation and Position Imaging (DOPI). We explain new understanding of molecular motors obtained from measurements using these techniques.  相似文献   

7.
From basepairs to birdsongs: phylogenetic data in the age of genomics   总被引:4,自引:0,他引:4  
Given the quantity of molecular data now available, including complete genomes for some organisms, one can ask whether there is a need for any data beyond complete genomic sequences for phylogenetic analysis. One reason to look beyond the genome is that not all character information is encoded in organismal genomes. We propose a hierarchy of characters that ranges from biologically transmitted but nongenomically encoded characters, such as bird songs, to characters that are genomically encoded. All of these characters can retain historical information and are potentially useful for phylogenetic analysis. In addition, a number of phenotypic levels that are expressions of the genome can be identified. The question whether it is worth including any of these levels if all of the underlying sequence data have been collected arises, since issues of redundancy occur. Utilization of phenotypic levels that are ultimately based on sequences may facilitate reconstructing homologies that are not evident from sequence data alone. We propose the use of simultaneous analysis of sequence data and as many levels of phenotypic characters as possible to take advantage of homology information that may be more easily recovered from the latter. A method that eliminates redundancy to the degree that it can be detected is proposed.  相似文献   

8.
Molecular and morphological data sets have yielded conflicting phylogenies for the Metazoa. So far, no general explanation for the existence of this conflict has been suggested. However, I believe that a neglected aspect of metazoan cladistics has introduced a systematic and substantial bias into morphological phylogenetic analyses. Most characters used for metazoan cladistics are coded as binary absence/presence characters. For most of these characters, the absence states are assumed to be uninformative default plesiomorphies, if they are defined at all. This character coding strategy could seriously underestimate the number of informative apomorphic absences or secondary character losses. Because nodes in morphological metazoan phylogenies are typically supported by relatively small numbers of characters each with a potentially strong impact on tree topology, failure to distinguish between primary absence and secondary loss of characters before a cladistic analysis may mislead morphological cladistics. This may falsely suggest conflict with molecular phylogenies, which are not sensitive to this bias. To test the existence of this bias, I compare the phylogenetic placement of a variety of metazoan taxa in molecular and morphological trees. In all instances investigated here, phylogenetic conflict can be resolved by allowing for secondary loss of morphological characters, which were assumed to be primitively absent in cladistic analyses. These findings suggest that we should be cautious in interpreting the results of morphological metazoan cladistic analyses and additionally illustrate the value of a more functional approach to comparative morphology in certain circumstances.  相似文献   

9.
Prospects for molecular breeding of barley   总被引:1,自引:0,他引:1  
Data from UK Recommended List Trials showed that the introduction of new cultivars of spring and winter barley has maintained a significant increase in yield over time, whereas there has been no significant improvement in hot water extract, the major determinant of good malting quality, in either crop. Commercial barley breeding is based upon phenotypic selection, and the introduction of molecular breeding methods must either increase the rate of advance, or offer an improvement in the cost‐effectiveness of breeding programmes. Molecular breeding can be applied to either single gene or polygenic characters but is not widely used in commercial barley breeding, other than as a marker for resistance to the Barley Yellow Mosaic Virus complex. There are many reports of potential targets for use in molecular breeding but the few validation studies that have been carried out to date are disappointing. Results from genomics studies are likely to lead to the identification of key candidate genes, which can be associated with economically important characters through co‐location on certain chromosomal regions. Associations between candidate gene sequence haplotypes and phenotypic characteristics is expected to identify allelic combinations, which are most frequently observed in successful cultivars, that can be used in molecular breeding of barley on a commercial scale.  相似文献   

10.
Traditional classification concepts in lichenology are often, but not always, supported by molecular results. Molecular data should be compared and correlated with micro-morphological and ultrastructural information before systematic rearrangements are undertaken. Visualization of the distribution of morphological and other characters in specified groups is considered as a desirable resultper se, but it is also important to discover whether correlating characters are dependent on each other or not; and if not, whether their distribution in a group might support existing classification concepts. A data set for lecanoralean and other lichenized and lichenicolous genera, comprising 90—mostly multi-state—characters was used to store morphological, chemical and ecological data, and to test character correlations. Several examples of such analyses are presented. The following pairs of characters show some degree of dependence: ascospore septation and number per ascus, ascospore wall type and pigmentation, ascospore and epihymenium pigmentation. Several authors postulated that ascus types are good phylogenetic markers. Ascus types have been widely used for classification concepts of the Lecanorales. Two-dimensional correlation queries of ascus types with the following morphologcal characters were made: substratum preference, thallus growth form and ascospore septation. These correlations supply characteristic profiles for the various ascus types, which have to be compared with forthcoming phylogenetic hypotheses based on molecular data.  相似文献   

11.
Considerable progress has been made recently in phylogenetic reconstruction in a number of groups of organisms. This progress coincides with two major advances in systematics: new sources have been found for potentially informative characters (i. e., molecular data) and (more importantly) new approaches have been developed for extracting historical information from old or new characters (i. e., Hennigian phylogenetic systematics or cladistics). The basic assumptions of cladistics (the existence and splitting of lineages marked by discrete, heritable, and independent characters, transformation of which occurs at a rate slower than divergence of lineages) are discussed and defended. Molecular characters are potentially greater in quantity than (and usually independent of) more traditional morphological characters, yet their great simplicity (i. e., fewer potential character states; problems with determining homology), and difficulty of sufficient sampling (particularly from fossils) can lead to special difficulties. Expectations of the phylogenetic behavior of different types of data are investigated from a theoretical standpoint, based primarily on variation in the central parameter λ (branch length in terms of expected number of character changes per segment of a tree), which also leads to possibilities for character and character state weighting. Also considered are prospects for representing diverse yet clearly monophyletic clades in larger-scale cladistic analyses, e. g., the exemplar method vs. “compartmentalization” (a new approach involving substituting an inferred “archetype” for a large clade accepted as monophyletic based on previous analyses). It is concluded that parsimony is to be preferred for synthetic, “total evidence” analyses because it appears to be a robust method, is applicable to all types of data, and has an explicit and interpretable evolutionary basis. © 1994 Wiley-Liss, Inc.  相似文献   

12.
All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar‐feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species‐rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar‐feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well‐studied organisms such as phyllostomid bats.  相似文献   

13.
Molecular evidence of the monophyly of the Halteria (Strepsiptera + Diptera) is reviewed. The majority of morphological characters, which have classically been used to establish a Strepsiptera + Coleoptera sister group, are rejected, because they are based on erroneous interpretations of strepsipteran morphology. The scorings of 31 morphological characters, which directly relate to the phylogenetic position of Strepsiptera, are provided, and their distribution and optimization on the molecular + morphological tree is discussed. Of these, 13 characters specifically support the placement of Strepsiptera within the Mecopterida; seven of which are based on the optimization of inapplicable or missing data, and six of which are based on states that can be scored for Strepsiptera. Only a single character (posteromotorism) suggests a sister group relationship with the Coleoptera. The morphological and molecular data are largely congruent, and suggest that the Strepsiptera are sister group to the Diptera.  相似文献   

14.
Antibody molecular farming in plants and plant cells   总被引:1,自引:0,他引:1  
`Molecular Farming' is a novel approach to the production of pharmaceuticals, where valuable recombinant proteins can be produced in transgenic organisms on an agricultural scale. Plants have been traditionally used as a source of medicines, but the use of transgenic plants in molecular farming represents a novel source of molecular medicines that include plasma proteins, enzymes, growth factors, vaccines and recombinant antibodies. Until recently, the wide use of these molecular medicines was limited because of the difficulty in producing these proteins outside animals or animal cell cultures. The application of molecular biology and plant biotechnology in the 1990s showed that many molecular medicines could be synthesised in plants. The goal of this Molecular Farming technology is to produce pharmaceuticals that are safer, easier to produce and less expensive than those produced in animals or microbial cultures. Here, we examine the production of recombinant antibodies by Molecular Farming.  相似文献   

15.
Molecular Detection, Quantification, and Diversity Evaluation of Microalgae   总被引:1,自引:0,他引:1  
This study reviews the available molecular methods and new high-throughput technologies for their practical use in the molecular detection, quantification, and diversity assessment of microalgae. Molecular methods applied to other groups of organisms can be adopted for microalgal studies because they generally detect universal biomolecules, such as nucleic acids or proteins. These methods are primarily related to species detection and discrimination among various microalgae. Among current molecular methods, some molecular tools are highly valuable for small-scale detection [e.g., single-cell polymerase chain reaction (PCR), quantitative real-time PCR (qPCR), and biosensors], whereas others are more useful for large-scale, high-throughput detection [e.g., terminal restriction length polymorphism, isothermal nucleic acid sequence-based amplification, loop-mediated isothermal amplification, microarray, and next generation sequencing (NGS) techniques]. Each molecular technique has its own strengths in detecting microalgae, but they may sometimes have limitations in terms of detection of other organisms. Among current technologies, qPCR may be considered the best method for molecular quantification of microalgae. Metagenomic microalgal diversity can easily be achieved by 454 pyrosequencing rather than by the clone library method. Current NGS, third and fourth generation technologies pave the way for the high-throughput detection and quantification of microalgal diversity, and have significant potential for future use in field monitoring.  相似文献   

16.
Molecular methods for the assessment of bacterial viability   总被引:2,自引:0,他引:2  
  相似文献   

17.
Molecular data are ideal for exploring evolutionary history because of its universality, stochasticity, and abundance. These features provide a means of exploring the evolutionary history of all organisms (including those that do not tend to leave fossils), potentially within a statistical framework that allows testing of evolutionary hypotheses. However, the discrepancy between molecular and paleontological dates for three key "explosive" radiations inferred from the fossil record--the Cambrian explosion of animal phyla and the post-KT radiations of modern orders of mammals and birds--have led to a reexamination of the assumptions on which molecular dates are based. Could variation in the rate of molecular evolution, perhaps associated with "explosive" radiations, cause overestimation of diversification dates? Here I examine four hypothetical causes of fast molecular rates in explosive radiations--body size, morphological rate, speciation rate, and ecological diversification--using available empirical evidence on patterns of variation in rate of molecular evolution.  相似文献   

18.
Signal, noise, and reliability in molecular phylogenetic analyses.   总被引:38,自引:0,他引:38  
DNA sequences and other molecular data compared among organisms may contain phylogenetic signal, or they may be randomized with respect to phylogenetic history. Some method is needed to distinguish phylogenetic signal from random noise to avoid analysis of data that have been randomized with respect to the historical relationships of the taxa being compared. We analyzed 8,000 random data matrices consisting of 10-500 binary or four-state characters and 5-25 taxa to study several options for detecting signal in systematic data bases. Analysis of random data often yields a single most-parsimonious tree, especially if the number of characters examined is large and the number of taxa examined is small (both often true in molecular studies). The most-parsimonious tree inferred from random data may also be considerably shorter than the second-best alternative. The distribution of tree lengths of all tree topologies (or a random sample thereof) provides a sensitive measure of phylogenetic signal: data matrices with phylogenetic signal produce tree-length distributions that are strongly skewed to the left, whereas those composed of random noise are closer to symmetrical. In simulations of phylogeny with varying rates of mutation (up to levels that produce random variation among taxa), the skewness of tree-length distributions is closely related to the success of parsimony in finding the true phylogeny. Tables of critical values of a skewness test statistic, g1, are provided for binary and four-state characters for 10-500 characters and 5-25 taxa. These tables can be used in a rapid and efficient test for significant structure in data matrices for phylogenetic analysis.  相似文献   

19.
Molecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well‐documented phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer‐lived species tend to have slower rates of molecular evolution than their shorter‐lived counterparts. Although a similar pattern has been uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths within the “tree fern” clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided with the evolution of the long‐lived tree‐like habit at the base of the tree fern clade. This suggests that a generation time effect may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines, but will be necessary for a full appreciation of molecular evolution.  相似文献   

20.
Abstract.— Molecular evolution has been considered to be essentially a stochastic process, little influenced by the pace of phenotypic change. This assumption was challenged by a study that demonstrated an association between rates of morphological and molecular change estimated for "total-evidence" phylogenies, a finding that led some researchers to challenge molecular date estimates of major evolutionary radiations. Here we show that Omland's (1997) result is probably due to methodological bias, particularly phylogenetic nonindependence, rather than being indicative of an underlying evolutionary phenomenon. We apply three new methods specifically designed to overcome phylogenetic bias to 13 published phylogenetic datasets for vertebrate taxa, each of which includes both morphological characters and DNA sequence data. We find no evidence of an association between rates of molecular and morphological rates of change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号