首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A saturable blood-to-brain transport system for leptin across the blood-brain barrier (BBB) has been observed in vivo. Since the main component of the non-fenestrated microvessels of the BBB is the endothelial cell, we established an in vitro culture system of these cerebrovascular cells to study leptin transport and to determine whether the self-inhibition of leptin transport characteristic of a saturable system occurs at this level. The results show that 125I-leptin crossed from the luminal to abluminal side of a monolayer of cerebral microvessel cells significantly faster than the albumin and lactalbumin controls. This transport of 125I-leptin across an in vitro BBB was significantly faster than in the opposite direction and was dose-relatedly inhibited by the addition of unlabeled leptin. Thus, the results establish that the saturable transport system for leptin across the BBB occurs at the level of the endothelial cells of the BBB.  相似文献   

2.
Senile amyloid plaques are one of the diagnostic hallmarks of Alzheimer's disease (AD). However, the severity of clinical symptoms of AD is weakly correlated with the plaque load. AD symptoms severity is reported to be more strongly correlated with the level of soluble amyloid-β (Aβ) assemblies. Formation of soluble Aβ assemblies is stimulated by monomeric Aβ accumulation in the brain, which has been related to its faulty cerebral clearance. Studies tend to focus on the neurotoxicity of specific Aβ species. There are relatively few studies investigating toxic effects of Aβ on the endothelial cells of the blood–brain barrier (BBB). We hypothesized that a soluble Aβ pool more closely resembling the in vivo situation composed of a mixture of Aβ40 monomer and Aβ42 oligomer would exert higher toxicity against hCMEC/D3 cells as an in vitro BBB model than either component alone. We observed that, in addition to a disruptive effect on the endothelial cells integrity due to enhancement of the paracellular permeability of the hCMEC/D3 monolayer, the Aβ mixture significantly decreased monomeric Aβ transport across the cell culture model. Consistent with its effect on Aβ transport, Aβ mixture treatment for 24 h resulted in LRP1 down-regulation and RAGE up-regulation in hCMEC/D3 cells. The individual Aβ species separately failed to alter Aβ clearance or the cell-based BBB model integrity. Our study offers, for the first time, evidence that a mixture of soluble Aβ species, at nanomolar concentrations, disrupts endothelial cells integrity and its own transport across an in vitro model of the BBB.  相似文献   

3.
The blood-brain barrier (BBB), which constitutes the interface between blood and cerebral parenchyma, has been shown to be disrupted during retroviral associated neuromyelopathies. Human T cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis is a slowly progressive neurodegenerative disease, in which evidence of BBB breakdown has been demonstrated by the presence of lymphocytic infiltrates in the CNS and plasma protein leakage through cerebral endothelium. Using an in vitro human BBB model, we investigated the cellular and molecular mechanisms involved in endothelial changes induced by HTLV-1-infected lymphocytes. We demonstrate that coculture with infected lymphocytes induces an increase in paracellular endothelial permeability and transcellular migration, via IL-1alpha and TNF-alpha secretion. This disruption is associated with tight junction disorganization between endothelial cells, and alterations in the expression pattern of tight junction proteins such as zonula occludens 1. These changes could be prevented by inhibition of the NF-kappaB pathway or of myosin light chain kinase activity. Such disorganization was confirmed in histological sections of spinal cord from an HTLV-1-associated myelopathy/tropical spastic paraparesis patient. Based on this BBB model, the present data indicate that HTLV-1-infected lymphocytes can induce BBB breakdown and may be responsible for the CNS infiltration that occurs in the early steps of retroviral-associated neuromyelopathies.  相似文献   

4.
Pan W  Tu H  Kastin AJ 《Peptides》2006,27(4):911-916
Endogenous compounds, including ingestive peptides, can interact with the blood-brain barrier (BBB) in different ways. Here we used in vivo and in vitro techniques to examine the BBB permeation of the newly described satiety peptide obestatin. The fate of obestatin in blood and at the BBB was contrasted with that of adiponectin. By the sensitive multiple time-regression method, obestatin appeared to have an extremely fast influx rate to the brain whereas adiponectin did not cross the BBB. HPLC analysis, however, showed the obestatin result to be spurious, reflecting rapid degradation. Absence of BBB permeation by obestatin and adiponectin was in contrast to the saturable transport of human ghrelin reported previously. As a positive control, ghrelin showed saturable binding and endocytosis in RBE4 cerebral microvessel endothelial cells. By comparison, obestatin lacked specific binding and endocytosis, and the small amount internalized showed rapid intracellular degradation before the radioactivity was released by exocytosis. The differential interactions of obestatin, adiponectin, and ghrelin with the BBB illustrate their distinctive physiological interactions with the CNS.  相似文献   

5.
Summary 1. Aims: Brain vascular endothelial cells secret Adrenomedullin (AM) has multifunctional biological properties. AM affects cerebral blood flow and blood–brain barrier (BBB) function. We studied the role of AM on the permeability and tight junction proteins of brain microvascular endothelial cells (BMEC).2. Methods: BMEC were isolated from rats and a BBB in vitro model was generated. The barrier functions were studied by measuring the transendothelial electrical resistance (TEER) and the permeability of sodium fluorescein and Evans’ blue albumin. The expressions of tight junction proteins were analyzed using immunocytochemistry and immunoblotting.3. Results: AM increased TEER of BMEC monolayer dose-dependently. Immunocytochemistry revealed that AM enhanced the claudin-5 expression at a cell–cell contact site in a dose-dependent manner. Immunoblotting also showed an overexpression of claudin-5 in AM exposure.4.Conclusions: AM therefore inhibits the paracellular transport in a BBB in vitro model through claudin-5 overexpression.  相似文献   

6.
HIV-1 circulates both as free virus and within immune cells, with the level of free virus being predictive of clinical course. Both forms of HIV-1 cross the blood-brain barrier (BBB) and much progress has been made in understanding the mechanisms by which infected immune cells cross the blood-brain barrier BBB. How HIV-1 as free virus crosses the BBB is less clear as brain endothelial cells are CD4 and galactosylceramide negative. Here, we found that HIV-1 can use the mannose-6 phosphate receptor (M6PR) to cross the BBB. Brain perfusion studies showed that HIV-1 crossed the BBB of all brain regions consistent with the uniform distribution of M6PR. Ultrastructural studies showed HIV-1 crossed by a transcytotic pathway consistent with transport by M6PR. An in vitro model of the BBB was used to show that transport of HIV-1 was inhibited by mannose, mannan, and mannose-6 phosphate and that enzymatic removal of high mannose oligosaccharide residues from HIV-1 reduced transport. Wheatgerm agglutinin and protamine sulfate, substances known to greatly increase transcytosis of HIV-1 across the BBB in vivo, were shown to be active in the in vitro model and to act through a mannose-dependent mechanism. Transport was also cAMP and calcium-dependent, the latter suggesting that the cation-dependent member of the M6PR family mediates HIV-1 transport across the BBB. We conclude that M6PR is an important receptor used by HIV-1 to cross the BBB.  相似文献   

7.
P-glycoprotein (P-gp), an adenosine triphosphate (ATP)-binding cassette transporter which acts as a drug efflux pump, is highly expressed at the blood-brain barrier (BBB) where it plays an important role in brain protection. Recently, P-gp has been reported to be located in the caveolae of multidrug-resistant cells. In this study, we investigated the localization and the activity of P-gp in the caveolae of endothelial cells of the BBB. We used an in vitro model of the BBB which is formed by co-culture of bovine brain capillary endothelial cells (BBCEC) with astrocytes. Caveolar microdomains isolated from BBCEC are enriched in P-gp, cholesterol, caveolin-1, and caveolin-2. Moreover, P-gp interacts with caveolin-1 and caveolin-2; together, they form a high molecular mass complex. P-gp in isolated caveolae is able to bind its substrates, and the caveolae-disrupting agents filipin III and nystatin decrease P-gp transport activity. In addition, mutations in the caveolin-binding motif present in P-gp reduced the interaction of P-gp with caveolin-1 and increased the transport activity of P-gp. Thus, P-gp expressed at the BBB is mainly localized in caveolae and its activity may be modulated by interaction with caveolin-1.  相似文献   

8.
We have previously reported that the co-culture of endothelial and glioma cell lines provides an in vitro model for investigating properties of the blood-brain barrier (BBB). To characterise the model system further we have investigated the effects of vasoactive substances implicated in increases in BBB permeability. Additionally, we have also examined whether activation of cyclic AMP signalling pathways, which elevate cerebral endothelial cell barrier function, similarly modulate our model system. ATP, histamine, bradykinin, and serotonin significantly decreased model BBB transendothelial electrical resistance and manipulations which elevate cyclic AMP enhanced culture resistance. These data indicate that our model BBB system responds in a manner characteristic of cerebral microvascular endothelial cells and the BBB in vivo. These data further emphasize the usefulness of our model system.  相似文献   

9.
10.
It has never been determined if activation of the blood-brain barrier (BBB) during simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) infection is a function of high levels of circulating virus or if the virus has to be within a cell capable of crossing the BBB to activate it. In vitro models of the BBB are becoming recognized as an acceptable method for determining the cellular events associated with HIV neuroinvasion. Cell free virus (when added in the physiologically relevant lumen) although capable of activating the endothelial cells of our in vitro BBB did not activate astrocytes beneath. SIVmac251-infected CEMx174 cells, however, were capable of activating both components of the BBB model. Here we demonstrate that an in vitro model of the BBB can be activated in a physiologically relevant manner, that SIV requires to be cell-associated and that endothelial cells of the BBB are not the only components that are activated during SIV neuroinvasion.  相似文献   

11.
The blood-brain barrier (BBB) plays an important role in controlling the passage of molecules from the blood to the extracellular fluid environment of the brain. The multidrug efflux pump P-glycoprotein (P-gp) is highly expressed in the luminal membrane of brain capillary endothelial cells, thus forming a functional barrier to lipid-soluble drugs, notably, antitumor agents. It is of interest to develop an in vitro BBB model that stably expresses P-gp to investigate the mechanisms of regulation in expression and activity. The rat brain endothelial cell line, GPNT, was derived from a previously characterized rat brain endothelial cell line. A strong expression of P-gp was found in GPNT monocultures, whereas the multidrug resistance-associated pump Mrp1 was not expressed. The transendothelial permeability coefficient of the P-gp substrate vincristine across GPNT monolayers was close to the permeability coefficient of bovine brain endothelial cells cocultured with astrocytes, a previously documented in vitro BBB model. Furthermore, the P-gp blocker cyclosporin A induced a large increase in apical to basal permeability of vincristine. Thus, P-gp is highly functional in GPNT cells. A 1-h treatment of GPNT cells with dexamethasone resulted in decreased uptake of vincristine without any increase in P-gp expression. This effect could be mimicked by protein kinase C (PKC) activation and prevented by PKC inhibition, strongly suggesting that activation of P-gp function may involve a PKC-dependent pathway. These results document the GPNT cell line as a valuable in vitro model for studying drug transport and P-gp function at the BBB and suggest that activation of P-gp activity at the BBB might be considered in chemotherapeutic treatment of cancer patients.  相似文献   

12.
Alzheimer’s disease (AD) is characterized by excessive cerebrovascular deposition of the β-amyloid peptide (Aβ). The investigation of Aβ transport across the blood-brain barrier (BBB) has been hindered by inherent limitations in the cellular systems currently used to model the BBB, such as insufficient barrier properties and poor reproducibility. In addition, many of the existing models are not of human or brain origin and are often arduous to establish and maintain. Thus, we characterized an in vitro model of the BBB employing human brain microvascular endothelial cells (HBMEC) and evaluated its utility to investigate Aβ exchange at the blood-brain interface. Our HBMEC model offers an ease of culture compared with primary isolated or coculture BBB models and is more representative of the human brain endothelium than many of the cell lines currently used to study the BBB. In our studies, the HBMEC model exhibited barrier properties comparable to existing BBB models as evidenced by the restricted permeability of a known paracellular marker. In addition, using a simple and rapid fluormetric assay, we showed that antagonism of key Aβ transport proteins significantly altered the bi-directional transcytosis of fluorescein-Aβ (1–42) across the HBMEC model. Moreover, the magnitude of these effects was consistent with reports in the literature using the same ligands in existing in vitro models of the BBB. These studies establish the HBMEC as a representative in vitro model of the BBB and offer a rapid fluorometric method of assessing Aβ exchange between the periphery and the brain.  相似文献   

13.
Increased cerebrovascular permeability is an important factor in the development of cerebral oedema after stroke, implicating the blood-brain barrier (BBB). To investigate the effect of hypoxia on the permeability changes, we used a cell culture model of the BBB consisting of a co-culture of brain capillary endothelial cells and glial cells. When endothelial cells from this co-culture model were submitted alone to hypoxic conditions, long exposures (48 h) were necessary to result in an increase in endothelial cell monolayer permeability to [3H]inulin. When endothelial cells were incubated in presence of glial cells, a huge increase in permeability occurred after 9 h of hypoxic conditions. Oxygen glucose deprivation (OGD) resulted in a much shorter time (i.e. 2 h) required for an increase in permeability. We have demonstrated that this OGD-induced permeability increase involves a transcellular rather than a paracellular pathway. Conditioned medium experiments showed that glial cells secrete soluble permeability factors during OGD. However, endothelial cells have to be made sensitive by OGD in order to respond to these glial soluble factors. This work shows that an early cross-talk between glial and endothelial cells occurs during ischaemic stroke and alters BBB transcellular transport by means of glial factor secretions.  相似文献   

14.
The blood-brain barrier (BBB) is composed of the cerebral microvascular endothelium, which, together with astrocytes, pericytes, and the extracellular matrix (ECM), contributes to a "neurovascular unit". It was our objective to clarify the impact of endogenous extracellular matrices on the barrier function of BBB microvascular endothelial cells cultured in vitro. The study was performed in two consecutive steps: (i) The ECM-donating cells (astrocytes, pericytes, endothelial cells) were grown to confluence and then removed from the growth substrate by a protocol that leaves the ECM behind. (ii) Suspensions of cerebral endothelial cells were seeded on the endogenous matrices and barrier formation was followed with time. In order to quantify the tightness of the cell junctions, all experiments were performed on planar gold-film electrodes that can be used to read the electrical resistance of the cell layers as a direct measure for endothelial barrier function (electric cell-substrate impedance sensing, ECIS). We observed that endogenously isolated ECM from both, astrocytes and pericytes, improved the tightness of cerebral endothelial cells significantly compared to ECM that was derived from the endothelial cells themselves as a control. Moreover, when cerebral endothelial cells were grown on extracellular matrices produced by non-brain endothelial cells (aorta), the electrical resistances were markedly reduced. Our observations indicate that glia-derived ECM - as an essential part of the BBB - is required to ensure proper barrier formation of cerebral endothelial cells.  相似文献   

15.
The blood–brain barrier (BBB) restricts the entry of proteins as well as potential drugs to cerebral tissues. We previously reported that a family of Kunitz domain-derived peptides called Angiopeps can be used as a drug delivery system for the brain. Here, we further characterize the transcytosis ability of these peptides using an in vitro model of the BBB and in situ brain perfusion. These peptides, and in particular Angiopep-2, exhibited higher transcytosis capacity and parenchymal accumulation than do transferrin, lactoferrin, and avidin. Angiopep-2 transport and accumulation in brain endothelial cells were unaffected by the P-glycoprotein inhibitor, cyclosporin A, indicating that this peptide is not a substrate for the efflux pump P-glycoprotein. However, competition studies show that activated α2-macroglobulin, a specific ligand for the low-density lipoprotein receptor-related protein-1 (LRP1) and Angiopep-2 can share the same receptor. In addition, LRP1 was detected in glioblastomas and brain metastases from lung and skin cancers. Fluorescent microscopy also revealed that Alexa488-Angiopep-2 co-localized with LRP1 in brain endothelial cell monolayers. Overall, these results suggest that Angiopep-2 transport across the BBB is, in part, mediated by LRP1.  相似文献   

16.
Antibodies against receptors that undergo transcytosis across the blood-brain barrier (BBB) have been used as vectors to target drugs or therapeutic peptides into the brain. We have recently discovered a novel single domain antibody, FC5, which transmigrates across human cerebral endothelial cells in vitro and the BBB in vivo. The purpose of this study was to characterize mechanisms of FC5 endocytosis and transcytosis across the BBB and its putative receptor on human brain endothelial cells. The transport of FC5 across human brain endothelial cells was polarized, charge independent and temperature dependent, suggesting a receptor-mediated process. FC5 taken up by human brain endothelial cells co-localized with clathrin but not with caveolin-1 by immunochemistry and was detected in clathrin-enriched subcellular fractions by western blot. The transendothelial migration of FC5 was reduced by inhibitors of clathrin-mediated endocytosis, K+ depletion and chlorpromazine, but was insensitive to caveolae inhibitors, filipin, nystatin or methyl-beta-cyclodextrin. Following internalization, FC5 was targeted to early endosomes, bypassed late endosomes/lysosomes and remained intact after transcytosis. The transcytosis process was inhibited by agents that affect actin cytoskeleton or intracellular signaling through PI3-kinase. Pretreatment of human brain endothelial cells with wheatgerm agglutinin, sialic acid, alpha(2,3)-neuraminidase or Maackia amurensis agglutinin that recognizes alpha(2,3)-, but not with Sambucus nigra agglutinin that recognizes alpha(2,6) sialylgalactosyl residues, significantly reduced FC5 transcytosis. FC5 failed to recognize brain endothelial cells-derived lipids, suggesting that it binds luminal alpha(2,3)-sialoglycoprotein receptor which triggers clathrin-mediated endocytosis. This putative receptor may be a new target for developing brain-targeting drug delivery vectors.  相似文献   

17.
Brain capillary endothelial cells are responsible for forming the blood-brain barrier (BBB). Methods are now available to isolate microvessels from brain and study their biochemical and transport characteristics. From these investigations, new ideas have been proposed concerning the role of endothelial cells in the function of the BBB. More recently, success in culturing endothelial cells from brain microvessels has opened the way for novel approaches to the study of the regulation of endothelial cell permeability. We anticipate continued rapid progress in this area and expect that this will lead to a better understanding of the mechanisms involved in the regulation of BBB permeability and brain capillary function.  相似文献   

18.
The present study aimed to investigate pathways that contribute to uptake and transcytosis of high-density lipoproteins (HDLs) and HDL-associated alpha-tocopherol (alpha TocH) across an in vitro model of the blood-brain barrier (BBB). In primary porcine brain capillary endothelial cells HDL-associated alpha TocH was taken up in 10-fold excess of HDL holoparticles, indicating efficient selective uptake, a pathway mediated by scavenger receptor class B, type I (SR-BI). SR-BI was present in caveolae of brain capillary endothelial cells and expressed almost exclusively at the apical membrane. Disruption of caveolae with methyl-beta-cyclodextrin (CDX) resulted in (mis)sorting of SR-BI to the basolateral membrane. Immunohistochemistry of porcine brain cryosections revealed SR-BI expression on brain capillary endothelial cells and presumably astrocytic endfeet. HDL-associated [(14)C]alpha TocH taken up by brain capillary endothelial cells was recovered in sucrose gradient fractions containing the majority of cellular caveolin-1, the major caveolae-associated protein. During mass transfer studies using alpha TocH-enriched HDL, approximately 50% of cellular alpha TocH was recovered with the bulk of cellular caveolin-1 and SR-BI. Efflux experiments revealed that a substantial amount of cell-associated [(14)C]alpha TocH could be mobilized into the culture medium. In addition, apical-to-basolateral transport of HDL holoparticles and HDL-associated alpha TocH was saturable. Results from the present study suggest that part of cerebral apolipoprotein A-I and alpha TocH originates from plasma HDL transcytosed across the BBB and that caveolae-located SR-BI facilitates selective uptake of HDL-associated alpha TocH at the BBB.  相似文献   

19.
The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.  相似文献   

20.
A major contributing factor to high mortality and morbidity associated with CNS infection is the incomplete understanding of the pathogenesis of this disease. Relatively small numbers of pathogens account for most cases of CNS infections in humans, but it is unclear how such pathogens cross the blood-brain barrier (BBB) and cause infections. The development of the in vitro BBB model using human brain microvascular endothelial cells has facilitated our understanding of the microbial translocation of the BBB, a key step for the acquisition of CNS infections. Recent studies have revealed that microbial translocation of the BBB involves host cell actin cytoskeletal rearrangements, most likely as the result of specific microbial-host interactions. A better understanding of microbial-host interactions that are involved in microbial translocation of the BBB should help in developing new strategies to prevent CNS infections. This review summarises our current understanding of the pathogenic mechanisms involved in translocation of the BBB by meningitis-causing bacteria, fungi and parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号