首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-molecular-weight xylanase from Trichoderma viride.   总被引:1,自引:1,他引:0       下载免费PDF全文
M Ujiie  C Roy    M Yaguchi 《Applied microbiology》1991,57(6):1860-1862
An endo-1,4-beta-xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) has been isolated from a commercial preparation of Trichoderma viride. The molecular weight was 22,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the pI value was 9.3. The xylanase was a true xylanase without cellulase activity. When the N-terminal amino acid sequence of the first 50 residues was compared with that of a xylanase from Schizophyllum commune, strong evidence for homology was found, with more than 50% amino acid identity. T. viride xylanase also possessed extensive identity with a proposed amino-terminal consensus sequence of xylanases from bacteria.  相似文献   

2.
The gene encoding an endo-β-1,4-xylanase from an Indonesian indigenous Bacillus licheniformis strain I5 was amplified using PCR, cloned, and expressed in Escherichia coli. The nucleotide sequence of a 642 bp DNA fragment was determined, revealing one open reading frame that encoded a xylanase. Based on the nucleotide sequence, calculated molecular mass of the enzyme was 23 kDa. This xylanase has a predicted typical putative signal peptide; however, in E. coli, the active protein was located mainly in intracellular form. Neither culture supernatant of recombinant E. coli nor periplasmic fraction has significantly detectable xylanase activity. The deduced amino acid of the gene has 91% identity with that of Bacillus subtilis endoxylanase. Optimal activity of the recombinant enzyme was at pH 7 and 50°C  相似文献   

3.
4.
Aeromonas caviae W-61 produces multiple extracellular xylanases, the xylanases 1, 2, 3, 4, and 5. In this study, we purified and characterized the xylanase 5 of A. caviae W-61, and amplified a part of xylanase 5 gene (xyn5). The purified xylanase 5 was found to be a single polypeptide with molecular mass of 140 kDa. It was an endo-beta-1,4-xylanase showing optimum temperature 40 degrees C and optimum pH 6.0. Xylobiose, xylotriose, xylotetrose, xylopentose, xylohexose and a small amount of xylose were detected as the hydrolysis products. The N-terminal amino acid sequence and several internal amino acid sequences of xylanases 5 were determined. From the sequence, a 1.8 kbp fragment was amplified by PCR using forward and reverse primers. DNA sequencing confirmed the presence of nucleotide sequences corresponding to the N-terminal amino acid sequence and the internal amino acid sequences of xylanase 5.  相似文献   

5.
Zhou C  Bai J  Deng S  Wang J  Zhu J  Wu M  Wang W 《Bioresource technology》2008,99(4):831-838
The complete gene xyn// that encodes endo-1,4-beta-xylanase secreted by Aspergillus usamii E001 was cloned and sequenced. The coding region of the gene is separated by only one intron. It encodes 184 amino acid residues of a protein with a calculated molecular weight of 19.8kDa plus a signal peptide of 27 amino acids. The amino acid sequence of the xyn// gene has higher similarity with those of family 11 of glycosyl hydrolases reported from other microorganisms. The mature peptide encoding cDNA was subcloned into pET-28a(+) expression vector. The recombinant plasmid was expressed in Escherichia coli BL21-CodonPlus (DE3)-RIL, and xylanase activity was measured. The expressed fusion protein was analyzed by SDS-PAGE and a new specific band with molecular weight of about 20kDa was found when induced by IPTG. Enzyme activity assay verified the recombinant protein as a xylanase. A maximum activity of 49.6Umg(-1) was obtained from cellular extract of E. coli BL21-CodonPlus (DE3)-RIL harboring pET-28a-xyn//. The xylanase had optimal activity at pH 4.6 and 50 degrees C. This is the first report on the cloning of a xylanase gene from A. usamii.  相似文献   

6.
A new xylanase gene, xynAS9, was cloned from Streptomyces sp. S9, which was isolated from Turpan Basin, China. The full-length gene consists of 1,395 bp and encodes 465 amino acids including 38 residues of a putative signal peptide. The overall amino acid sequence shares the highest identity (50.8%) with a putative endo-1,4-beta-xylanase from Streptomyces avermitilis of the glycoside hydrolase family 10. The gene fragment encoding the mature xylanase was expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified to electrophoretic homogeneity and subsequently characterized. The optimal pH and temperature for the recombinant enzyme were 6.5 and 60 degrees C, respectively. The enzyme showed broad temperature adaptability, retaining more than 65% of the maximum activity when assayed at 50-80 degrees C. The enzyme also had good thermal and pH stability. The K (m) values for oat spelt xylan and birchwood xylan substrates were 2.85 and 2.43 mg ml(-1), with the V (max) values of 772.20 and 490.87 mumol min(-1) mg(-1), respectively. The hydrolysis products of xylan were mainly xylose and xylobiose. These favorable properties should make XynAS9 a good candidate in various industrial applications.  相似文献   

7.
Termites play an important role in the degradation of dead plant materials and have acquired endogenous and symbiotic cellulose digestion capabilities. The feruloyl esterase enzyme (FAE) gene amplified from the metagenomic DNA of Coptotermes formosanus gut was cloned in the TA cloning vector and subcloned into a pET32a expression vector. The Ft3-7 gene has 84% sequence identity with Clostridium saccharolyticum and shows amino acid sequence identity with predicted xylanase/chitin deacetylase and endo-1,4-beta-xylanase. The sequence analysis reveals that probably Ft3-7 could be a new gene and that its molecular mass was 18.5 kDa. The activity of the recombinant enzyme (Ft3-7) produced in Escherichia coli (E.coli) was 21.4 U with substrate ethyl ferulate and its specific activity was 24.6 U/mg protein. The optimum pH and temperature for enzyme activity were 7.0 and 37oC, respectively. The substrate utilization preferences and sequence similarity of the Ft3-7 place it in the type-D sub-class of FAE.  相似文献   

8.
Xylanases are one of the industrially valuable enzymes. Using RT-PCR and 5'- and 3'-RACE procedures, we have cloned a full-length xylanase encoding gene from a filamentous fungus, Cryptovalsa mangrovei (BCC7197) from Phuket, Thailand. The results showed that BCC7197 xylanase cDNA has an open reading frame of 978 bp encoding 325 amino acid residues. Further sequence analysis revealed that this xylanase gene is belonged to the glycosyl hydrolase family 10 and has approximately 50-60% amino acid sequence similarity to other fungal xylanases. Furthermore, expression of BCC7197 xylanase in the Pichia pastoris was also performed. The results demonstrated that the active BCC7197 xylanase protein was successfully produced and secreted from P. pastoris.  相似文献   

9.
Treatment of tobacco suspension cells ( Nicotiana tabacum cv. KY 14) with a purified β -1,4-endoxylanase from Trichoderma viride [1 μg enzyme (ml cells)−1] caused a 13-fold increase in the levels of acylated sterol glycosides and elicited the synthesis of phytoalexins. A commercial preparation of xylanase from Trichoderma viride caused an identical shift in sterols. In contrast, a commerical xylanase from Aureobasidium pullaulans had no effect on the levels of acylated sterol glycosides, but did elevate the levels of sterol esters. Treatment of the cells with Cu2+ or Ag+ also evoked a severalfold increase in the levels of acylated sterol glycosides. Analysis of the various sterol lipid classes revealed that the large xylanase-induced increase in acylated sterol glycosides occurred at the expense of sterol esters, free sterols and sterol glycosides. Further analyses revealed that the most abundant phytosterol in each of the four classes of sterol lipids was β -sitosterol. Linoleic acid was the most abundant fatty acid in the sterol esters, and palmitic and linoleic acids were the most abundant fatty acids in the acylated sterol glycosides. Glucose was the only sugar moiety in the sterol glycoside and acvlated sterol glycosides. Glucose was the only sugar moiety in the sterol glycoside and acylated sterol glycoside fractions. The results of the present study demonstrate that xylanase from Trichoderma viride induces a dramatic shift in the level of acylated sterol glycosides, indicating that endoxylanase was probably the active component in the cellulase enzyme preparations used in our previous study.  相似文献   

10.
[目的]从棉花黄萎病真菌Verticillium dahliae中克隆木聚糖酶基因,并在毕赤酵母中进行异源表达,研究酶学性质.[方法]通过多序列比对设计简并引物,扩增出真菌V. dahliae木聚糖酶基因片段,再采用基因组步行PCR技术获得全长木聚糖酶基因序列.经BLAST比对并结合GT-AG原则分析,该基因含有一个大小为63 bp的内含子,利用DpnI介导的缺失方法对含内含子的全长木聚糖酶基因进行剪接,获得该基因的全长cDNA.将克隆到的cDNA在毕赤酵母GS115进行了表达,重组酶经纯化后进行酶学性质分析.[结果]BLAST比对显示,该cDNA推测的氨基酸序列和已知木聚糖酶的最高一致性为72%.测得该酶最适反应温度为45℃,最适反应pH值为6,在pH5-9维持50%以上的活性,对山毛榉材木聚糖具有最好的水解效果.Mg2 和Ca2 对酶有激活作用,分别提高了33.7%和16.6%,EDTA,β-巯基乙醇和NaN3对酶的活性基本没有影响,Tween-80和DMSO使酶活性提高了28.4%和12.8%.[结论]本文从引起棉花黄萎病的真菌V. dahliae中克隆到的木聚糖酶基因是在GenBank上登录的第一个来自棉花黄萎病真菌的木聚糖酶基因序列.本文所用的克隆方法可以高效的从植物病原真菌和白腐真菌克隆只含一个内含子的11家族的新木聚糖酶基因,避免了摸索原始菌株酶表达诱导条件,检测酶的活性等繁琐的操作.酶学性质分析显示该酶在低聚木糖的制备,面包改良上有潜在的应用价值.  相似文献   

11.
Four electrophoretically distinct 1,4-beta-D-glucan cellobiohydrolase enzymes (exo-cellobiohydrolase, EC 3.2.1.91) from Trichoderma viride have been purified to homogeneity. Three enzymes (A, B, and C) were from a commercial T. viride preparation whereas the other (D) was from T. viride QM 9123 grown on cellulose in submerged culture. The enzymes were similar with respect to ultraviolet light absorption, amino acid and amino sugar composition, heat stability, molecular weight, specific activity, and carboxyterminal residues, indicating very nearly identical polypeptide portions. The enzymes also exhibited immunological cross-reactivity. The enzymes differed most in the content and composition of covalently bound neutral carbohydrate.  相似文献   

12.
S Shima  Y Igarashi  T Kodama 《Gene》1991,104(1):33-38
The nucleotide sequence of the Clostridium cellulolyticum endo-beta-1,4- glucanase (EGCCD)-encoding gene, celCCD, and its flanking regions, was determined. The open reading frame encodes a protein (Mr 66,061) which consists of 584 amino acids (aa). The N terminus shows the features of the typical signal peptide, with a cleavage site after Gly24. The protein could be divided into N-terminal and C-terminal regions by an intermediate Pro + Thr-rich sequence. Deletion analysis suggests the C-terminal region is not necessary for EG activity. The predicted aa sequence of the mature protein was similar to those of the central catalytic and the following C-terminal regions of the C. thermocellum endoglucanase H (EGH; identity, 58.8%). The N-terminal region resembled that of the endoglucanase, EGCCA, from C. cellulolyticum (identity, 24.7%; 336 aa) and the endoglucanase, EGE, from C. thermocellum (identity, 31.4%; 373 aa). The C-terminal regions ended with two conserved 21-aa stretches which had close similarity to each other. The C-terminal sequence was also highly similar to the reiterated domain of several EG and a xylanase from C. thermocellum, and of an EG from C. cellulolyticum.  相似文献   

13.
A thermostable xylanase gene, xyn10A (CAP0053), was cloned from Clostridium acetobutylicum ATCC 824. The nucleotide sequence of the C. acetobutylicum xyn10A gene encoded a 318-amino-acid, single-domain, family 10 xylanase, Xyn10A, with a molecular mass of 34 kDa. Xyn10A exhibited extremely high (92%) amino acid sequence identity with Xyn10B (CAP0116) of this strain and had 42% and 32% identity with the catalytic domains of Rhodothermus marinus xylanase I and Thermoascus aurantiacus xylanase I, respectively. Xyn10A enzyme was purified from recombinant Escherichia coli and was highly active toward oat-spelt and Birchwood xylan and slightly active toward carboxymethyl cellulose, arabinogalactouronic acid, and various p-nitrophenyl monosaccharides. Xyn10A hydrolyzed xylan and xylooligosaccharides larger than xylobiose to produce xylose. This enzyme was optimally active at 60°C and had an optimum pH of 5.0. This is one of a number of related activities encoded on the large plasmid in this strain.  相似文献   

14.
Specific binding of interacting proteins generally depends on a limited set of amino acid residues located at the contact interface. We have applied a phage-display-based screening method to simultaneously evaluate the role of multiple residues of endo-beta-1,4-xylanase enzymes in conferring binding specificity towards two different endoxylanase inhibitors. Seven residues of the two beta-strand 'thumb' region of Trichoderma longibrachiatum endo-beta-1,4-xylanase XynII were targeted for randomization. The generated combinatorial library representing 62,208 site-directed variants was displayed on the surface of filamentous phage and selected against xylanase inhibitor protein (XIP) and Triticum aestivum xylanase inhibitor (TAXI). DNA sequence analysis of phagemid panning isolates provided information on the occurrence of particular amino acids at distinct positions. In particular, residues at positions 124 (Asn) and 131 (Thr) were found to be critical for specific inhibitor binding. These residue predictions derived from the combinatorial exploration of the thumb region and accompanying sequence analyses were experimentally confirmed by testing the inhibitor sensitivity of a limited set of recombinantly expressed XynII mutants. In addition, we successfully altered the inhibition susceptibility of the bacterial Bacillus subtilis endoxylanase XynA from XIP-insensitive to XIP-sensitive.  相似文献   

15.
Adjacent regions of a Ruminococcus flavefaciens 17 DNA fragment were found to encode xylanase and beta(1,3-1,4)-glucanase activities. Sequencing of this fragment showed that both activities are encoded by a single 2,406-bp open reading frame corresponding to the xynD gene. The predicted product has a characteristic signal sequence that is followed by an amino-terminal domain related to family G xylanases, while the carboxyterminal domain is related to beta(1,3-1,4)-glucanases from several other bacterial species. These two domains are connected by a region of unknown function that consists of 309 amino acids and includes a 30-amino-acid threonine-rich sequence. A polypeptide having a molecular weight of approximately 90,000 and exhibiting xylanase and beta(1,3-1,4)-glucanase activities was detected in Escherichia coli cells carrying the cloned xynD gene. This is one of the first cases in which a microbial polysaccharidase has been shown to carry separate catalytic domains active against different plant cell wall polysaccharides within the same polypeptide. xynD is one of a family of related genes in R. flavefaciens that encode enzymes having multiple catalytic domains, and the amino terminus of XYLD exhibits a high degree of similarity with the corresponding regions of another xylanase, XYLA, which carries two different xylanase catalytic domains.  相似文献   

16.
根据莱因衣藻、卵形肾藻、普通小球藻等10种藻类的atpA全基因氨基酸高度保守序列,设计简并引物,利用PCR方法从盐藻叶绿体DNA中扩增出约400bp的片段,将该片段连接到T-vector上进行序列测定。结果表明,核苷酸长度为405bp,编码135个氨基酸。推导的氨基酸序列与莱因衣藻的同源性为92%,普通小球藻88%,Mesostigmaviride87%,卵形肾藻86%,Cyanidioschyzonmerolae85%。以所克隆的DNA片段为探针,与盐藻叶绿体基因组进行SouthernBlot杂交结果有明显的杂交信号。据此可推断本实验中所克隆的序列为杜氏盐藻叶绿体atpA基因片段。该基因序列已被GenBank收录,接受号为AY435096。  相似文献   

17.
Summary The cloning, expression and nucleotide sequence of a 3 kb DNA segment on pLS206 containing a xylanase gene (xynB) from Butyrivibrio fibrisolvens H17c was investigated. The open reading frame (ORF) of 1905 by encoded a xylanase of 635 amino acid residues (Mr 73156). At least 850 by at the 3 end of the gene could be deleted without loss of xylanase activity. The deduced amino acid sequence was confirmed by purifying the enzyme and subjecting it to N-terminal amino acid sequence analysis. In Escherichia coli C600 (pLS206) cells the xylanase was localized in the cytoplasm. Its optimum pH for activity was between pH 5.4 and 6, and optimum temperature 55° C. The primary structure of the xylanase showed a significant level of identity with a cellobiohydrolase/endoglucanase of Caldocellum saccharolyticum, as well as with the xylanases of the alkaliphilic Bacillus sp. strain C-125, B. fibrisolvens strain 49, and Pseudomonas fluorescens subsp. cellulosa.Abbreviations ORF open reading frame - pNPCase p-nitrophen-yl--d-cellobiosidase - (xynB) gene coding for XynB - XynB xylanase  相似文献   

18.
We have cloned the xynA gene coding for xylanase A, a major component of the xylanase family, from Aspergillus kawachii. The cDNA was isolated from an A. kawachii cDNA library by immunoscreening using antibody raised against the purified xylanase A protein. Nucleotide sequence analysis of the cDNA showed a 981-bp open reading frame that encoded a protein of 327 amino acid residues. The signal peptide was composed of 25 amino acid residues and the N-terminus of the mature protein was pyroglutamic acid. The transformed yeast with a cloned cDNA produced xylanase. The genomic DNA was arranged as ten exons and nine introns.  相似文献   

19.
A xylanase gene, xyn1, which encodes Paenibacillus sp. strain W-61 xylanase 1 (Xyn1), was cloned in Escherichia coli. xyn1 encodes 211 amino acid residues, including 28 amino acid residues of a signal peptide. The deduced amino acid sequence of the mature Xyn1 showed 95.7%, 84.0%, and 83.7% identity to family 11 xylanases of Aeromonas caviae ME-1, Paenibacillus sp., and Bacillus stearothermophilus respectively. The physico-chemical properties of recombinant Xyn1 were very similar to those of intact Xyn1, except for the molecular mass. The pattern of xylooligosaccharides generated by rXyn1 was investigated by fluorophore-assisted carbohydrate electrophoresis (FACE). The degradation rate of xylohexaose by rXyn1 increased markedly as compared with that of xylopentaose. Xylohexaose had a single preferential point of cleavage by rXyn1. On the basis of the pattern of action of xylooligosaccharides, the number of subsites was estimated to be six. The catalytic site was located between the third and the fourth subsites from non-reducing end.  相似文献   

20.
A gene encoding a xylanase, named xynS20, was cloned from the ruminal fungus Neocallimastix patriciarum. The DNA sequence of xynS20 revealed that the gene was 1,008 bp in size and encoded amino acid sequences with a predicted molecular weight of 36 kDa. The amino acid sequence alignment showed that the highest sequence identity (28.4%) is with insect gut xylanase XYL6805. According to the sequence-based classification, a putative conserved domain of glycosyl hydrolase family 11 was detected at the N-terminus of XynS20 and a putative conserved domain of family 1 carbohydrate-binding module (CBM) was observed at the C-terminus of XynS20. An Asn-rich linker sequence was found between the N-terminal catalytic domain and the C-terminal CBM of XynS20. To examine the activity of the gene product, xynS20 gene was cloned as an oleosin-fused protein, expressed in Escherichia coli, affinity-purified by formation of artificial oil bodies, released from oleosin by intein-mediated peptide cleavage, and finally harvested by concentration of the supernatant. The specific activity of purified XynS20 toward oat spelt xylan was 1,982.8 U mg−1. The recombinant XynS20 was stable in the mild acid pH range from 5.0 to 6.0, and the optimum pH was 6.0. The optimal reaction temperature of XynS20 was 45°C; at temperatures below 30 and above 55°C, enzyme activity was less than 50% of that at the optimal temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号