首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X Yu  X Yuan  Z Matsuda  T H Lee    M Essex 《Journal of virology》1992,66(8):4966-4971
Accumulating evidence suggests that the matrix (MA) protein of retroviruses plays a key role in virus assembly by directing the intracellular transport and membrane association of the Gag polyprotein. In this report, we show that the MA protein of human immunodeficiency virus type 1 is also critical for the incorporation of viral Env proteins into mature virions. Several deletions introduced in the MA domain (p17) of human immunodeficiency virus type 1 Gag polyprotein did not greatly affect the synthesis and processing of the Gag polyprotein or the formation of virions. Analysis of the viral proteins revealed normal levels of Gag and Pol proteins in these mutant virions, but the Env proteins, gp120 and gp41, were hardly detectable in the mutant virions. Our data suggest that an interaction between the viral Env protein and the MA domain of the Gag polyprotein is required for the selective incorporation of Env proteins during virus assembly. Such an interaction appears to be very sensitive to conformational changes in the MA domain, as five small deletions in two separate regions of p17 equally inhibited viral Env protein incorporation. Mutant viruses were not infectious in T cells. When mutant and wild-type DNAs were cotransfected into T cells, the replication of wild-type virus was also hindered. These results suggest that the incorporation of viral Env protein is a critical step for replication of retroviruses and can be a target for the design of antiviral strategies.  相似文献   

2.
The mechanisms involved in the incorporation of viral glycoproteins into virions are incompletely understood. For retroviruses, incorporation may involve interactions between the Gag proteins of these viruses and the cytoplasmic domains of the relevant envelope (Env) glycoproteins. Recent studies have identified within the cytoplasmic tail of the human immunodeficiency virus type 1 (HIV-1) Env protein a tyrosine-containing internalization motif similar to those found in the cytoplasmic domains of certain cell surface proteins that undergo rapid constitutive endocytosis in clathrin-coated pits. Given that surface expression of the HIV-1 Env protein is essential for the production of infectious virus, the presence of this internalization motif is surprising. We show here that in contrast to the rapid rate of Env protein internalization observed in cells expressing the Env protein in the absence of other HIV-1 proteins, the rate of internalization of Env protein from the surfaces of HIV-1-infected cells is extremely slow. The presence of the Pr55gag precursor protein is necessary and sufficient for inhibition of Env protein internalization, while a mutant Pr55-gag that is incapable of mediating Env incorporation into virions is also unable to inhibit endocytosis of the Env protein. The failure of the Env protein to undergo endocytosis from the surface of an HIV-1-infected cell may reflect the fact that the proposed interaction of the matrix domain of the Gag protein with Env during assembly prevents the interaction of Env with host adaptin molecules that recruit plasma membrane molecules such as the transferrin receptor into clathrin-coated pits. When the normal ratio of Gag and Env proteins in the infected cells is altered by overexpression of Env protein, this mechanism allows removal of excess Env protein from the cell surface. Taken together, these results suggest that a highly conserved system to reduce surface levels of the Env protein functions to remove Env protein that is not associated with Gag and that is therefore not destined for incorporation into virions. This mechanism for the regulation of surface levels of Env protein may protect infected cells from Env-dependent cytopathic effects or Env-specific immune responses.  相似文献   

3.
Highly conserved amino acids in the second helix structure of the human immunodeficiency virus type 1 (HIV-1) MA protein were identified to be critical for the incorporation of viral Env proteins into HIV-1 virions from transfected COS-7 cells. The effects of these MA mutations on viral replication in the HIV-1 natural target cells, CD4+ T lymphocytes, were evaluated by using a newly developed system. In CD4+ T lymphocytes, mutations in the MA domain of HIV-1 Gag also inhibited the incorporation of viral Env proteins into mature HIV-1 virions. Furthermore, mutations in the MA domain of HIV-1 Gag reduced surface expression of viral Env proteins in CD4+ T lymphocytes. The synthesis of gp160 and cleavage of gp160 to gp120 were not significantly affected by MA mutations. On the other hand, the stability of gp120 in MA mutant-infected cells was significantly reduced compared to that in the parental wild-type virus-infected cells. These results suggest that functional interaction between HIV-1 Gag and Env proteins is not only critical for efficient incorporation of Env proteins into mature virions but also important for proper intracellular transport and stable surface expression of viral Env proteins in infected CD4+ T lymphocytes. A single amino acid substitution in MA abolished virus infectivity in dividing CD4+ T lymphocytes without significantly affecting virus assembly, virus release, or incorporation of Gag-Pol and Env proteins, suggesting that in addition to its functional role in virus assembly, the MA protein of HIV-1 also plays an important role in other steps of virus replication.  相似文献   

4.
The matrix domain (MA) of the simian immunodeficiency virus (SIV) is encoded by the amino-terminal region of the Gag polyprotein precursor and is the component of the viral capsid that lines the inner surface of the virus envelope. To define domains of the SIV MA protein that are involved in virus morphogenesis, deletion and substitution mutations were introduced in this protein in the context of a gag-protease construct and expressed in the vaccinia virus vector system. The MA mutants were characterized with respect to synthesis and processing of the Gag precursor, assembly and release of virus-like particles, and incorporation of the envelope (Env) glycoprotein into particles. We have identified two regions of the SIV MA which are critical for particle formation. Both domains are located in a central hydrophobic alpha-helix of the SIV MA, according to data on the structure of this protein. In addition, we have characterized a domain whose mutation impairs the incorporation of SIV Env glycoproteins with long transmembrane cytoplasmic tails into particles. Interestingly, these mutant particles retained the ability to associate with SIV Env proteins with short cytoplasmic tails.  相似文献   

5.
The envelope (env) glycoproteins of human immunodeficiency viruses type 1 (HIV-1) and type 2 (HIV-2) form dimers shortly after synthesis. Analysis of the simian immunodeficiency virus (SIV) env protein expressed by a recombinant vaccinia virus revealed that it, too, forms stable homodimers. When the HIV-1 and SIV env proteins or the HIV-1 and HIV-2 env proteins were coexpressed in the same cells, heterodimers were formed. Thus, the env proteins of HIV-1, HIV-2, and SIV possess a functionally conserved domain involved in subunit-subunit recognition and assembly that likely involves the ectodomain of gp41.  相似文献   

6.
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) has been shown to redirect the site of virus assembly in polarized epithelial cells. To test whether localization of the glycoprotein exclusively to the endoplasmic reticulum (ER) could redirect virus assembly to that organelle in nonpolarized cells, an ER -retrieval signal was engineered into an epitope-tagged variant of Env. The epitope tag, attached to the C terminus of Env, did not affect the normal maturation and transport of the glycoprotein or the incorporation of Env into virions. The epitope-tagged Env was also capable of mediating syncytium formation and virus entry with a similar efficiency to that of wild-type Env. When the epitope was modified to contain a consensus K(X)KXX ER retrieval signal, however, the glycoprotein was no longer proteolytically processed into its surface and transmembrane subunits and Env could not be detected at the cell surface by biotinylation. Endoglycosidase H analysis revealed that the modified Env was not transported to the Golgi apparatus. Immunofluorescent staining patterns were also consistent with the exclusion of Env from the Golgi. As expected, cells expressing the modified Env failed to form syncytia with CD4+ permissive cells. Despite this tight localization of Env to the ER, when the modified Env was expressed in the context of virus, virions continued to be produced efficiently from the plasma membrane of transfected cells. However, these virions contained no detectable glycoprotein and were noninfectious. Electron microscopy revealed virus budding from the plasma membrane of these cells, but no virus was seen assembling at the ER membrane and no assembled virions were found within the cell. These results suggest that the accumulation of Env in an intracellular compartment is not sufficient to redirect the assembly of HIV Gag in nonpolarized cells.  相似文献   

7.
Peut V  Kent SJ 《Journal of virology》2007,81(23):13125-13134
Human immunodeficiency virus (HIV)-specific CD8 T lymphocytes are important for the control of viremia, but the relative utility of responses to the various HIV proteins is controversial. Immune responses that force escape mutations that exact a significant fitness cost from the mutating virus would help slow progression to AIDS. The HIV envelope (Env) protein is subject to both humoral and cellular immune responses, suggesting that multiple rounds of mutation are needed to facilitate viral escape. The Gag protein, however, has recently been shown to elicit a more effective CD8 T-cell immune response in humans. We studied 30 pigtail macaques for their CD8 T-lymphocyte responses to HIV-1 Env and simian immunodeficiency virus (SIV) Gag following prime/boost vaccination and intrarectal challenge with simian-human immunodeficiency virus SHIVmn229. Eight CD8 Env-specific T-cell epitopes were identified and mapped in 10 animals. Animals that generated Env-specific CD8 T-cell responses had equivalent viral loads and only a modest advantage in retention of peripheral CD4 T lymphocytes compared to those animals without responses to Env. This contrasts with animals that generated CD8 T-cell responses to SIV Gag in the same trial, demonstrating superior control of viral load and a larger advantage in retention of peripheral CD4 T cells than Gag nonresponders. Mutational escape was common in Env but, in contrast to mutations in Gag, did not result in the rapid emergence of dominant escape motifs, suggesting modest selective pressure from Env-specific T cells. These results suggest that Env may have limited utility as a CD8 T-cell immunogen.  相似文献   

8.
The p6Gag protein of human immunodeficiency virus type 1 (HIV-1) is produced as the carboxyl-terminal sequence within the Gag polyprotein. The amino acid composition of this protein is high in hydrophilic and polar residues except for a patch of relatively hydrophobic amino acids found in the carboxyl-terminal 16 amino acids. Internal cleavage of p6Gag between Y36 and P37, apparently by the HIV-1 protease, removes this hydrophobic tail region from approximately 30% of the mature p6Gag proteins in HIV-1MN. To investigate the importance of this cleavage and the hydrophobic nature of this portion of p6Gag, site-directed mutations were made at the minor protease cleavage site and within the hydrophobic tail. The results showed that all of the single-amino-acid-replacement mutants exhibited either reduced or undetectable cleavage at the site yet almost all were nearly as infectious as wild-type virus, demonstrating that processing at this site is not important for viral replication. However, one exception, Y36F, was 300-fold as infectious the wild type. In contrast to the single-substitution mutants, a virus with two substitutions in this region of p6Gag, Y36S-L41P, could not infect susceptible cells. Protein analysis showed that while the processing of the Gag precursor was normal, the double mutant did not incorporate Env into virus particles. This mutant could be complemented with surface glycoproteins from vesicular stomatitis virus and murine leukemia virus, showing that the inability to incorporate Env was the lethal defect for the Y36S-L41P virus. However, this mutant was not rescued by an HIV-1 Env with a truncated gp41TM cytoplasmic domain, showing that it is phenotypically different from the previously described MA mutants that do not incorporate their full-length Env proteins. Cotransfection experiments with Y36S-L41P and wild-type proviral DNAs revealed that the mutant Gag dominantly blocked the incorporation of Env by wild-type Gag. These results show that the Y36S-L41P p6Gag mutation dramatically blocks the incorporation of HIV-1 Env, presumably acting late in assembly and early during budding.  相似文献   

9.
Jolly C  Sattentau QJ 《Journal of virology》2005,79(18):12088-12094
Human immunodeficiency virus type 1 (HIV-1) can spread directly between T cells by forming a supramolecular structure termed a virological synapse (VS). HIV-1 envelope glycoproteins (Env) are required for VS assembly, but their mode of recruitment is unclear. We investigated the distribution of GM1-rich lipid rafts in HIV-1-infected (effector) T cells and observed Env colocalization with polarized raft markers GM1 and CD59 but not with the transferrin receptor that is excluded from lipid rafts. In conjugates of effector T cells and target CD4+ T cells, GM1, Env, and Gag relocated to the cell-cell interface. The depletion of cholesterol in the infected cell dispersed Env and GM1 within the plasma membrane, eliminated Gag clustering at the site of cell-cell contact, and abolished assembly of the VS. Raft integrity is therefore critical for Env and Gag co-clustering and VS assembly in T-cell conjugates.  相似文献   

10.
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms an inner coat directly underneath the lipid envelope of the virion. The outer surface of the lipid envelope surrounding the capsid is coated by the viral Env glycoproteins. We report here that the HIV-1 capsid-Env glycoprotein association is very sensitive to minor alterations in the MA protein. The results indicate that most of the MA domain of the Gag precursor, except for its carboxy terminus, is essential for this association. Viral particles produced by proviruses with small missense or deletion mutations in the region coding for the amino-terminal 100 amino acids of the MA protein lacked both the surface glycoprotein gp120 and the transmembrane glycoprotein gp41, indicating a defect at the level of Env glycoprotein incorporation. Alterations at the carboxy terminus of the MA domain had no significant effect on the levels of particle-associated Env glycoprotein or on virus replication. The presence of HIV-1 MA protein sequences was sufficient for the stable association of HIV-1 Env glycoprotein with hybrid particles that contain the capsid (CA) and nucleocapsid (NC) proteins of visna virus. The association of HIV-1 Env glycoprotein with the hybrid particles was dependent upon the presence of the HIV-1 MA protein domain, as HIV-1 Env glycoprotein was not efficiently recruited into virus particles when coexpressed with authentic visna virus Gag proteins.  相似文献   

11.
It has been previously shown that a proline substitution for any of the conserved leucine or isoleucine residues located in the leucine zipper-like heptad repeat sequence of human immunodeficiency virus type 1 (HIV-1) gp41 renders viruses noninfectious and envelope (Env) protein unable to mediate membrane fusion (S. S.-L. Chen, C.-N. Lee, W.-R. Lee, K. McIntosh, and T.-M. Lee, J. Virol. 67:3615–3619, 1993; S. S.-L. Chen, J. Virol. 68:2002–2010, 1994). To understand whether these variants could act as trans-dominant inhibitory mutants, the ability of these mutants to inhibit wild-type (wt) virus infectivity was examined. Comparable amounts of cell- and virion-associated gag gene products as well as virion-associated gp41 were found in transfection with wt or mutant HIV-1 provirus. Viruses obtained from coexpression of wt provirus with mutant 566 or 580 provirus inhibited more potently the production of infectious virus than did viruses generated from cotransfection of wt provirus with other mutant proviruses. Nevertheless, all viruses produced from mixed transfection showed decreased infectivity compared with that of the wt virus when a multinuclear-activation β-galactosidase induction assay was performed. The ability of wt Env to induce cytopathic effects was inhibited by coexpression with mutant Env. Coexpression of mutants inhibited the ability of the wt protein to mediate virus-to-cell transmission, as demonstrated by an env trans-complementation assay with a defective HIV-1 proviral vector. These observations indicated that mutant Env, per se, interferes with wt Env function. Moreover, cotransfection of wt and mutant proviruses produced amounts of cell- and virion-associated gag gene products comparable to those produced by transfection of wt provirus. Similar amounts of gp41 were also found in virions generated from wt-mutant cotransfection as well as from wt transfection alone. These results indicated that the inhibitory effect conferred by mutants on the wt virus infectivity does not involve the late steps of Gag protein assembly and budding, but they suggest that the wt and mutant Env proteins form a dysfunctional hetero-oligomer which is impaired in an early step of the virus replication cycle. Our study demonstrates that mutations in the HIV-1 gp41 leucine zipper-like heptad repeat sequence dominantly inhibit infectious virus production.  相似文献   

12.
Foamy viruses (FV) are unusual retroviruses that differ in many aspects of their life cycle from the orthoretroviruses such as human immunodeficiency virus. Similar to Mason–Pfizer monkey virus (MPMV), FV assemble into capsids intracellularly. The capsids are then transported to a cellular membrane for acquisition of envelope (Env) glycoproteins and budding. However, unlike MPMV, budding of FV is dependent upon the presence of Env. Previous work suggested that FV Env proteins are localized to the endoplasmic reticulum (ER) where budding takes place. However, very little was known about the details of FV assembly. We have used immunofluorescence and electron microscopy to visualize the intracellular location of FV assembly and budding. We have found that, as in the case of MPMV, FV capsids assemble at a pericentriolar site in the cytoplasm. Surprisingly, FV Env is mostly absent from this site and, contrary to expectations, FV capsid structural protein (Gag) is absent from the ER. Gag and Env only co-localize at the trans -Golgi network, suggesting that Env–Gag interactions that are required for viral egress from the cell, occurs at this site. Finally, inhibitor studies suggest an important role of microtubule networks for foamy viral assembly and budding.  相似文献   

13.
Human immunodeficiency virus (HIV)-1 replication is positively or negatively regulated through multiple interactions with host cell proteins. We report here that human Discs Large (Dlg1), a scaffold protein recruited beneath the plasma membrane and involved in the assembly of multiprotein complexes, restricts HIV-1 infectivity. The endogenous Dlg1 and HIV-1 Gag polyprotein spontaneously interact in HIV-1-chronically infected T cells. Depleting endogenous Dlg1 in either adherent cells or T cells does not affect Gag maturation, production, or release, but it enhances the infectivity of progeny viruses five- to sixfold. Conversely, overexpression of Dlg1 reduces virus infectivity by ~80%. Higher virus infectivity upon Dlg1 depletion correlates with increased Env content in cells and virions, whereas the amount of virus-associated Gag or genomic RNA remains identical. Dlg1 knockdown is also associated with the redistribution and colocalization of Gag and Env toward CD63 and CD82 positive vesicle-like structures, including structures that seem to still be connected to the plasma membrane. This study identifies both a new negative regulator that targets the very late steps of the HIV-1 life cycle, and an assembly pathway that optimizes HIV-1 infectivity.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) can readily accept envelope (Env) glycoproteins from distantly related retroviruses. However, we previously showed that the HIV-1 Env glycoprotein complex is excluded even from particles formed by the Gag proteins of another lentivirus, visna virus, unless the matrix domain of the visna virus Gag polyprotein is replaced by that of HIV-1. We also showed that the integrity of the HIV-1 matrix domain is critical for the incorporation of wild-type HIV-1 Env protein but not for the incorporation of a truncated form which lacks the 144 C-terminal amino acids of the cytoplasmic domain of the transmembrane glycoprotein. We report here that the C-terminal truncation of the transmembrane glycoprotein also allows the efficient incorporation of HIV-1 Env proteins into viral particles formed by the Gag proteins of the widely divergent Moloney murine leukemia virus (Mo-MLV). Additionally, pseudotyping of a Mo-MLV-based vector with the truncated rather than the full-length HIV-1 Env allowed efficient transduction of human CD4+ cells. These results establish that Mo-MLV-based vectors can be used to target cells susceptible to infection by HIV-1.  相似文献   

15.
S Bour  K Strebel 《Journal of virology》1996,70(12):8285-8300
We have recently shown that the envelope glycoprotein of the ROD10 isolate of human immunodeficiency virus type 2 (HIV-2) has the ability to positively regulate HIV-2 viral particle release. The activity provided by the ROD10 Env was remarkably similar to that of the HIV-1 Vpu protein, thus raising the possibility that the two proteins act in a related fashion. We now show that the ROD10 Env can functionally replace Vpu to enhance the rate of HIV-1 particle release. When provided in trans, both Vpu and the ROD10 Env restored wild-type levels of particle release in a Vpu-deficient mutant of the NL4-3 molecular clone with indistinguishable efficiencies. This effect was independent of the presence of the HIV-1 envelope protein. The ROD10 Env also enhanced HIV-1 particle release in the context of HIV-2 chimeric viruses containing the HIV-1 gag-pol, indicating a lack of need for additional HIV-1 products in this process. In addition, we show for the first time that HIV-1 Vpu, as well as ROD10 Env, has the ability to enhance simian immunodeficiency virus (SIV) particle release. The effects of Vpu and ROD10 Env on SIV particle release were indistinguishable and were observed in the context of full-length SIVmac239 and simian-human immunodeficiency virus chimeras. These results further demonstrate that ROD10 Env can functionally complement Vpu with respect to virus release. In contrast, we found no evidence of a destabilizing activity of ROD10 Env on the CD4 molecule. HIV-1 and HIV-2 thus appear to have evolved genetically distinct but functionally similar strategies to resolve the common problem of efficient release of progeny virus from infected cells.  相似文献   

16.
Ono A  Freed EO 《Journal of virology》2004,78(3):1552-1563
The human immunodeficiency virus type 1 (HIV-1) assembly-and-release pathway begins with the targeting of the Gag precursor to the site of virus assembly. The molecular mechanism by which Gag is targeted to the appropriate subcellular location remains poorly understood. Based on the analysis of mutant Gag proteins, we and others have previously demonstrated that a highly basic patch in the matrix (MA) domain of Gag is a major determinant of Gag transport to the plasma membrane. In this study, we determined that in HeLa and T cells, the MA mutant Gag proteins that are defective in plasma membrane targeting form virus particles in a CD63-positive compartment, defined as the late endosome or multivesicular body (MVB). Interestingly, we find that in primary human macrophages, both wild-type (WT) and MA mutant Gag proteins are targeted specifically to the MVB. Despite the fact that particle assembly in macrophages occurs at an intracellular site rather than at the plasma membrane, we observe that WT Gag expressed in this cell type is released as extracellular virions with high efficiency. These results demonstrate that Gag targeting to and assembly in the MVB are physiologically important steps in HIV-1 virus particle production in macrophages and that particle release in this cell type may follow an exosomal pathway. To determine whether Gag targeting to the MVB is the result of an interaction between the late domain in p6(Gag) and the MVB sorting machinery (e.g., TSG101), we examined the targeting and assembly of Gag mutants lacking p6. Significantly, the MVB localization of Gag was still observed in the absence of p6, suggesting that an interaction between Gag and TSG101 is not required for Gag targeting to the MVB. These data are consistent with a model for Gag targeting that postulates two different cellular binding partners for Gag, one on the plasma membrane and the other in the MVB.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein driving assembly and release of virions from infected cells. Gag alone is capable of self-assembly in vitro, but host factors have been shown to play a role in efficient viral replication and particle morphogenesis within the living cell. In a series of affinity purification experiments, we identified the cellular protein Lyric to be an HIV-1 Gag-interacting protein. Lyric was previously described to be an HIV-inducible gene and is involved in various signaling pathways. Gag interacts with endogenous Lyric via its matrix (MA) and nucleocapsid (NC) domains. This interaction requires Gag multimerization and Lyric amino acids 101 to 289. Endogenous Lyric is incorporated into HIV-1 virions and is cleaved by the viral protease. Gag-Lyric interaction was also observed for murine leukemia virus and equine infectious anemia virus, suggesting that it represents a conserved feature among retroviruses. Expression of the Gag binding domain of Lyric increased Gag expression levels and viral infectivity, whereas expression of a Lyric mutant lacking the Gag binding site resulted in lower Gag expression and decreased viral infectivity. The results of the current study identify Lyric to be a cellular interaction partner of HIV-1 Gag and hint at a potential role in regulating infectivity. Further experiments are needed to elucidate the precise role of this interaction.  相似文献   

18.
HIV-1 assembly depends on its structural protein, Gag, which after synthesis on ribosomes, traffics to the late endosome/plasma membrane, associates with HIV Env glycoprotein, and forms infectious virions. While Env and Gag migrate to lipid microdomains, their stoichiometry and specificity of interaction are unknown. Pseudotyped viral particles can be made with one viral core surrounded by heterologous envelope proteins. Taking advantage of this property, we analyzed the association of HIV Env and Ebola glycoprotein (GP), with HIV-1 Gag coexpressed in the same cell. Though both viral glycoproteins were expressed, each associated independently with Gag, giving rise to distinct virion populations, each with a single glycoprotein type. Confocal imaging demonstrated that Env and GP localized to distinct lipid raft microdomains within the same cell where they associated with different virions. Thus, a single Gag particle associates "quantally" with one lipid raft, containing homogeneous trimeric viral envelope proteins, to assemble functional virions.  相似文献   

19.
Chen J  Pathak VK  Peng W  Hu WS 《Journal of virology》2008,82(17):8253-8261
We have recently shown that the Gag polyproteins from human immunodeficiency virus type 1 (HIV-1) and HIV-2 can coassemble and functionally complement each other. During virion maturation, the Gag polyproteins undergo proteolytic cleavage to release mature proteins including capsid (CA), which refolds and forms the outer shell of a cone-shaped mature core. Less than one-half of the CA proteins present within the HIV-1 virion are required to form the mature core. Therefore, it is unclear whether the mature core in virions containing both HIV-1 and HIV-2 Gag consists of CA proteins from a single virus or from both viruses. To determine whether CA proteins from two different viruses can coassemble into mature cores of infectious viruses, we exploited the specificity of the tripartite motif 5alpha protein from the rhesus monkey (rhTRIM5alpha) for cores containing HIV-1 CA (hCA) but not the simian immunodeficiency virus SIV(mac) CA protein (sCA). If hCA and sCA cannot coassemble into the same core when equal amounts of sCA and hCA are coexpressed, the infectivities of such virus preparations in cells should be inhibited less than twofold by rhTRIM5alpha. However, if hCA and sCA can coassemble into the same core structure to form a mixed core, rhTRIM5alpha would be able to recognize such cores and significantly restrict virus infectivity. We examined the restriction phenotypes of viruses containing both hCA and sCA. Our results indicate that hCA and sCA can coassemble into the same mature core to produce infectious virus. To our knowledge, this is the first demonstration of functional coassembly of heterologous CA protein into the retroviral core.  相似文献   

20.
In addition to the viral envelope (Env) proteins, host cell-derived proteins have been reported to be present in human immunodeficiency virus and simian immunodeficiency virus (SIV) envelopes, and it has been postulated that they may play a role in infection. We investigated whether the incorporation of host cell proteins is affected by the structure and level of incorporation of viral Env proteins. To compare the cellular components incorporated into SIV particles and how this is influenced by the structure of the cytoplasmic domain, we compared SIV virions with full-length and truncated Env proteins. The levels of HLA-I and HLA-II molecules were found to be significantly (15- to 25-fold) higher in virions with full-length Env than in those with a truncated Env. Virions with a truncated Env were also found to be less susceptible to neutralization by specific antibodies against HLA-I or HLA-II proteins. We also compared the level of incorporation into SIV virions of a coexpressed heterologous viral glycoprotein, the influenza virus hemagglutinin (HA) protein. We found that SIV infection of cells expressing influenza virus HA resulted in the production of phenotypically mixed SIV virions containing influenza virus HA as well as SIV envelope proteins. The HA proteins were more effectively incorporated into virions with full-length Env than in virions with truncated Env. The phenotypically mixed particles with full-length Env, containing higher levels of HA, were sensitive to neutralization with anti-HA antibody, whereas virions with truncated Env proteins and containing lower levels of HA were more resistant to neutralization by anti-HA antibody. In contrast, SIV virions with truncated Env proteins were found to be highly sensitive to neutralization by antisera to SIV, whereas virions with full-length Env proteins were relatively resistant to neutralization. These results indicate that the cytoplasmic domain of SIV Env affects the incorporation of cellular as well as heterologous viral membrane proteins into the SIV envelope and may be an important determinant of the sensitivity of the virus to neutralizing antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号