首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
To study the mechanism of action of diflubenzuron (DFB) and other benzoylphenylureas, we have initially hypothesized that their action may be related to exocytosis: to test the hypothesis, we obtained an intracellular vesicle preparation from the homogenate of integument of newly molted American cockroachs (Periplaneta americana L.) in 10 mM MES buffer containing 250 mM sucrose (isotonic) and 2.5 mM MgSO4, at pH 6.6. By studying DFB's effect on various ion transporting activities, we demonstrated that calcium uptake in this intracellular particulate preparation was significantly inhibited by DFB at low concentrations (e.g., 10−8 M). Such an inhibitory effect of DFB on Ca2+ uptake was eliminated by the addition of ionophores or membrane disruptors, as well as the sonication of vesicle preparation. On the other hand, oligomycin, protein phosphorylation modulators, Na+, and Li+ did not affect the calcium uptake. Among ionophores, agents disrupting H+ gradients (e.g. FCCP and NEM) totally eliminated 45Ca uptaking activity by vesicles as well as the inhibitory effect of DFB. Among calcium ion modulators, calmodulin inhibitors such as calmidazolium and trifluoperazine decreased the Ca2+-uptake, whereas membrane calcium channel blocker, verapamil, did not. ATP and γ-S-GTP stimulated Ca2+ uptake. However, the former increased only the DFB insensitive portion and the latter largely the DFB sensitive part of Ca2+. Together these data support the hypothesis that the action site of DFB in this preparation is the GTP-dependent Ca2+ transport process which is coupled to vacuolar type intracellular vesicles in the integument cells.  相似文献   

2.
Ca2+ mobilization elicited by simulation with brief pulses of high K + were monitored with confocal laser scanned microscopy in intact, guinea pig cardiac myocytes loaded with the calcium indicator fluo-3. Single wavelength ratioing of fluorescence images obtained after prolonged integration times revealed non-uniformities of intracellular Ca2+ changes across the cell, suggesting the presence of significant spatial Ca2+ gradients. Treatment with 20 μM ryanodine, an inhibitor of Ca2+ release from the SR, and 10 μM verapamil, a calcium channel blocker, reduced by 42% and 76% respectively the changes in [Ca2+]i elicited by membrane depolarization. The overall spatial distribution of [Ca2+]i changes appeared unchanged. Ca2+ transients recorded in the presence of verapamil and ryanodine (about 20% of the size of control responses), diminished in the presence of 50 μM 2-4 Dichlorbenzamil (DCB) or 5 mM nickel, two relatively specific inhibitors of the exchange mechanism. Conversely, when the reversal potential of the exchange was shifted to negative potentials by lowering [Na+]0 or by increasing [Na+]i by treatment with 20 μM monensin, the amplitude of these Ca2+ transients increased. Ca2+ transients elicited by membrane depolarization and largely mediated by reverse operation of Na+-Ca2+ exchange could be recorded in the presence of ryanodine, verapamil and monensin. These findings suggest that in intact guinea pig cardiac cells, Ca2+ influx through the exchange mechanism activated by a membrane depolarization in the physiological range can be sufficient to play a significant role in excitation-contraction coupling.  相似文献   

3.
H. Mell  C. Wellnitz  A. Kr  ger 《BBA》1986,852(2-3):212-221
The electrochemical proton potential across the cytoplasmic membrane ( ) as well as the H+ / e ratio, which were brought about by the electron transport of Wolinella succinogenes, was measured with the aim of understanding the mechanism of electron-transport-coupled phosphorylation in this anaerobic bacterium. (1) Inverted vesicles derived from the bacterial membrane were found to take up protons from the external medium on initiation of fumarate reduction by H2. Proton uptake was dependent on the presence of K+ within the vesicles, was enhanced by the presence of valinomycin and DCCD and high internal buffer concentration, and was abolished by protonophores. The maximum H+ / e ratio slightly exceeded 1. (2) The vesicles accumulated thiocyanate in the steady state of fumarate reduction by H2. The concentration ratio (internal / external) was close to 1000 at an external thiocyanate concentration below 10 μM. Under the same conditions the uptake of methylamine was negligible. Thiocyanate uptake was abolished by the presence of a protonophore. (3) Cells of W. succinogenes accumulated tetraphenylphosphonium cation (TPP) in the steady state of fumarate reduction with H2 or formate. Under the same conditions the uptake of benzoic acid was negligible. From the amount of TPP taken up by the bacteria, the free internal concentration of TPP was evaluated according to the procedure of Zaritsky et al. (Zaritsky, A., Kihara, M. and MacNab, R.M. (1981) J. Membrane Biol. 63, 215–231). The concentration ratio (internal / external) was 700 in the absence and close to 1 in the presence of a protonophore or in the absence of external Na+. (4) The experimental results are consistent with the view that the energy transduction from electron transport to phosphorylation is done by means of the across the bacterial membrane.  相似文献   

4.
Abstract: The Na+ and K+ concentrations in isolated Torpedo marmorata synaptosomes were determined. Synaptosomes made according to the method of Israël et al. have high internal Na+ (290 MM) and low internal K+ (30 mM) concentrations. Modification of the homogenisation media permitted the isolation of synaptosomes which could maintain transmembrane ion gradients (internal Na+, 96 mM; K+, 81 mM); 0.1 mM-ouabain abolished these gradients. The trans-membrane Na+ gradient started to dissipate after 15 min at 20°C. Inclusion of ATP in the homogenisation medium enabled the synaptosomes to maintain the Na+ gradient for about 90 min. The presence of these transmembrane ion gradients stimulated choline uptake sevenfold. It is concluded that (a) by selecting the isolation media, Torpedo synaptosomes can be prepared with transmembrane ion gradients; (b) these gradients are ouabain-sensitive and stimulate choline uptake: (c) the synaptosomes require additional ATP to maintain the ion gradients.  相似文献   

5.
Abstract: Aspartate uptake by membrane vesicles derived from rat brain was investigated. The uptake is dependent on a Na+ gradient ([Na+] outside > [Na+] inside). Active transport of aspartate is strictly dependent upon the presence of sodium and maximal extent of transport is reached when both Na+ and Cl ions are present. The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. The uptake of aspartate is stimulated by a membrane potential (negative inside), as demonstrated by the effect of the ionophore carbonyl cyanide m -chlorophenylhydrazone and anions with different permeabilities. The presence of ouabain, an inhibitor of (Na++ K+)-ATPase, does not affect aspartate transport. The kinetic analysis shows that aspartate is accumulated by two systems with different affinities, showing K m and V max values of similar order to those found in slightly "cruder" preparations. Inhibition of the l -aspartate uptake by d -aspartate and d - and l -glutamate indicates that a common carrier is involved in the process, this being stereospecific for the d - and l -glutamate stereoisomers.  相似文献   

6.
Glutathione (GSH) transport was studied in synaptosomal membrane vesicles (SMV) of rat cerebral cortex. The present study shows that GSH uptake into SMV occurs very quickly in a time-dependent manner into an osmotically active intravesicular space. The initial rate of transport followed Michealis-Menten saturation kinetics with a Km 4.5±0.8 μM that shows a high affinity of the transporter for GSH. Therefore GSH uptake in SMV occurs by a mediated transport system which can be activated by either an inward gradient of cations, like Na+ or K+, or membrane depolarization. These results, together with those obtained by valinomycin-induced K+ diffusion potential, indicate that GSH synaptosomal transport is electrogenic by a negative charge transfer. The increase of GSH uptake measured by trans-stimulation experiments confirms a GSH bidirectional mediated transport which seems susceptible of modulation by changes in ionic fluxes and in the membrane potential. These results may indicate a possible involvement of this transporter in the role suggested for GSH in synaptic neurotransmission; also considering that GSH precursor of neuroactive aminoacids (glyeine, glutamate), may contribute to regulate their level in synapses. Finally, a GSH transporter in synaptosomes may contribute to maintaining the GSH homeostasis in cerebral cortex, where decreases of GSH levels have been related to susceptibility to neuropathologies.  相似文献   

7.
1. Ethylenediaminetetraacetate (EDTA) markedly activates the accumulation of Na+ and Li+ and the swelling which accompanies the ion uptake by isolated heart mitochondria. This activation is reflected in the removal of limited amounts of endogenous Mg2+ and extensive loss of K+. The removal of these cations requires the presence of Na+, a source of energy, and a permeant anion as well as EDTA. The effects of EDTA on the activation of Na+ uptake and cation removal are duplicated by chelators with a high affinity for Mg2+, but not by ethyleneglycol-bis-(β-aminoethylether)-N, N′-tetraacetic acid. Mg2+ at concentrations 5 to 6 times less than EDTA prevents both activation of Na+ uptake and cation removal.

2. EDTA does not appear to be bound by heart mitochondria. At neutral pH the chelator penetrates into the mitochondrial water volume to the same extent as sucrose and mannitol. At pH 8.1 where the removal of mitochondrial Mg2+ by EDTA is more effective, EDTA penetrates virtually the entire water volume. This penetration requires the presence of a source of energy, a transported cation such as Na+, and a permeant anion. It appears possible that the oscillations in ion uptake and swelling observed in the presence of EDTA at pH 8.1 may be related to the presence of the chelator in the interior compartment under these conditions.  相似文献   


8.
We sought to confirm a recent report that Fe+2 uptake into rat brush-border membrane vesicles is markedly increased by short-term consumption of iron-deficient diet, with no additional enhancement as the animal becomes functionally iron-deficient with continuing dietary Fe deprivation. In addition, we investigated whether previously observed in vivo absorption interactions of iron, zinc, and manganese occur in the brush border membrane vesicles uptake process, and whether short-term or long-term consumption of an iron-deficient diet affects the interaction at the uptake level. We did not observe any differences in Fe+2 uptake between normal and iron-deficient brush border membrane vesicles, even when the iron status contrast was intensified by feeding a high iron versus iron-deficient diet for 3 weeks. Equimolar Zn+2 and Mn+2 decreased Fe+2 uptake by 29 to 50% and 11 to 39%, respectively. Iron deficiency did not alter these effects. Equimolar Fe+2 decreased Zn+2 uptake by 13 to 22%. Calcium, included as a negative control, did not affect Fe+2 uptake. Thus, some competition between Fe+2 and similar divalent cations does occur at the level of the brush border membrane; the exact nature of this competition remains to be determined.  相似文献   

9.
To quantitatively understand intracellular Na+ and Cl homeostasis as well as roles of Na+/K+ pump and cystic fibrosis transmembrane conductance regulator Cl channel (ICFTR) during the β1-adrenergic stimulation in cardiac myocyte, we constructed a computer model of β1-adrenergic signaling and implemented it into an excitation-contraction coupling model of the guinea-pig ventricular cell, which can reproduce membrane excitation, intracellular ion changes (Na+, K+, Ca2+ and Cl), contraction, cell volume, and oxidative phosphorylation. An application of isoproterenol to the model cell resulted in the shortening of action potential duration (APD) after a transient prolongation, the increases in both Ca2+ transient and cell shortening, and the decreases in both Cl concentration and cell volume. These results are consistent with experimental data. Increasing the density of ICFTR shortened APD and augmented the peak amplitudes of the L-type Ca2+ current (ICaL) and the Ca2+ transient during the β1-adrenergic stimulation. This indirect inotropic effect was elucidated by the increase in the driving force of ICaL via a decrease in plateau potential. Our model reproduced the experimental data demonstrating the decrease in intracellular Na+ during the β-adrenergic stimulation at 0 or 0.5 Hz electrical stimulation. The decrease is attributable to the increase in Na+ affinity of Na+/K+ pump by protein kinase A. However it was predicted that Na+ increases at higher beating rate because of larger Na+ influx through forward Na+/Ca2+ exchange. It was demonstrated that dynamic changes in Na+ and Cl fluxes remarkably affect the inotropic action of isoproterenol in the ventricular myocytes.  相似文献   

10.
A simple tissue biosensor for measuring Na+ channel blockers such as tetrodotoxin (TTX) and saxitoxin (STX) has been developed. The membrane of frog bladder has Na+ channels which control the passage of Na+. It is well known that TTX blocks Na+ channels. The tissue biosensor consists of a Na+ electrode integrated within a flow cell. The tip of the electrode was covered with frog bladder membrane sandwiched between two sheets of cellulose acetate membrane, and the electrode was set in a flow cell.

A solution of 8% NaCl was carried in the cell and the output of the electrode allowed to stabilize. TTX was injected into the sensor system and measured from the inhibition ratio of the sensor peak output. One assay took approximately 5 min. The lower limit of detection was 86 fg. The continuous determination of TTX was feasible for 250 h in the presence of 0·003% NaN3. A Linear correlation was obtained between TTX activities of F-niphobles and F-parudale determined by the methods of TTX sensor and mouse assay.  相似文献   


11.
Euryhaline crustaceans tolerate exposure to a wide range of dilute media, using compensatory, ion regulatory mechanisms. However, data on molecular interactions occurring at cationic sites on the crustacean gill (Na+,K+)-ATPase, a key enzyme in this hyperosmoregulatory process, are unavailable. We report that Na+ binding at the activating site leads to cooperative, heterotropic interactions that are insensitive to K+. The binding of K+ ions to their high affinity sites displaces Na+ ions from their sites. The increase in Na+ ion concentrations increases heterotropic interactions with the K+ ions, with no changes in K0.5 for K+ ion activation at the extracellular sites. Differently from mammalian (Na+,K+)-ATPases, that from C. danae exhibits additional NH4+ ion binding sites that synergistically activate the enzyme at saturating concentrations of Na+ and K+ ions. NH4+ binding is cooperative, and heterotropic NH4+ ion interactions are insensitive to Na+ ions, but Na+ ions displace NH4+ ions from their sites. NH4+ ions also displace Na+ ions from their sites. Mg2+ ions modulate enzyme stimulation by NH4+ ions, displacing NH4+ ion from its sites. These interactions may modulate NH4+ ion excretion and Na+ ion uptake by the gill epithelium in euryhaline crustaceans that confront hyposmotic media.  相似文献   

12.
Abstract: Tryptophan uptake by membrane vesicles derived from rat brain was investigated. The uptake is dependent on the Na+ gradient [Na+] outside > [Na+] inside and is maximal when both Na+ and Cl are present. The uptake represents transport into an os-motically active space and not a binding artifact, as indicated by the effect of increasing the medium osmo-larity. The uptake of tryptophan is stimulated by a membrane potential (interior negative) as demonstrated by the effects of the ionophores valinomycin and carbonyl cyanide m-chlorophenylhydrazone and anions with different permeabilities. Kinetic data show that tryptophan is accumulated by two systems with different affinities. Ouabain, an inhibitor of Na+, K+-activated ATPase, does not affect tryptophan transport. The uptake of tryptophan is inhibited by high concentrations of phenylalanine, tyrosine, leucine and 3, 4-dihydroxyphenylalanine.  相似文献   

13.
The effects of N-ethylmaleimide (NEM) on mouse platelet serotonin (5-HT) and 86Rb+ uptake were studied. The 5-HT transport system showed a biphasic response to increasing concentrations of NEM, with low concentrations (25–50 μM) stimulating and high concentrations (200–400 μM) inhibiting 5-HT transport. Fluoxetine, an inhibitor of the platelet 5-HT transporter, blocked NEM-induced stimulation of 5-HT transport. The kinetics of 5-HT uptake indicated that NEM (50 μM) markedly increased the maximal rate of 5-HT transport (Vmax control = 28.4±1.4 pmol/108 platelets/4 min vs Vmax NEM = 64.5±9.5 pmol/108 platelets/4 min but had no significant effect on the Km value. Platelet Na+ K+ ATPase activity was determined by measuring 86Rb+ uptake. Platelet 86Rb+ uptake showed a biphasic response to NEM, with low concentrations (25–100 μM) significantly stimulating and high concentrations (400 μM) inhibiting uptake. These changes in platelet 86Rb+ uptake paralleled the biphasic changes in 5-HT transport. In the presence of fluoxetine, 5-HT transport was markedly inhibited but no change in the ability of NEM to stimulate 86Rb+ uptake was observed. These data suggest that low concentrations of NEM activate plasma membrane Na+ K+ ATPase which results in a marked stimulation of platelet 5-HT transport.  相似文献   

14.
Respiration, membrane potential generation and motility of the marine alkalotolerant Vibrio alginolyticus were studied. Subbacterial vesicles competent in NADH oxidation and Δψ generation were obtained. The rate of NADH oxidation by the vesicles was stimulated by Na+ in a fashion specifically sensitive to submicromolar HQNO (2-heptyl-4-hydroxyquinoline N-oxide) concentrations. The same amounts of HQNO completely suppressed the Δψ generation. Δψ was also inhibited by cyanide, gramicidin D and by CCCP + monensin. CCCP (carbonyl cyanide m-chlorophenylhydrazone) added without monensin exerted a much weaker effect on Δψ. Na+ was required to couple NADH oxidation with Δψ generation. These findings are in agreement with the data of Tokuda and Unemoto on Na+-motive NADH oxidase in V. alginolyticus. Motility of V. alginolyticus cells was shown to be (i) Na+-dependent, (ii) sensitive to CCCP + monensin combination, whereas CCCP and monensin, added separately, failed to paralyze the cells, (iii) sensitive to combined treatment by HQNO, cyanide or anaerobiosis and arsenate, whereas inhibition of respiration without arsenate resulted only in a partial suppression of motility. Artificially imposed ΔpNa, i.e., addition of NaCl to the K+-loaded cells paralyzed by HQNO + arsenate, was shown to initiate motility which persisted for several minutes. Monensin completely abolished the NaCl effect. Under the same conditions, respiration-supported motility was only slightly lowered by monensin. The artificially-imposed ΔpH, i.e., acidification of the medium from pH 8.6 to 6.5 failed to activate motility. It is concluded that Δ Na+ produced by (i) the respiratory chain and (ii) an arsenate-sensitive anaerobic mechanism (presumably by glycolysis + Na+ ATPase) can be consumed by an Na+-motor responsible for motility of V. alginolyticus.  相似文献   

15.
Peroxynitrite (ONOO-) is a powerful oxidant which is formed from the reaction between nitric oxide (NO) and superoxide anion. It has therefore been proposed to mediate the toxic actions caused by NO. Since ONOO- may be formed in the central nervous system (CNS) in pathological conditions such as brain ischaemia, we decided to investigate whether this molecule induces the release of the endogenous excitatory amino acids glutamate and aspartate from neurones. We selected as biological model acutely dissociated rat cerebellar granule neurones in suspension to allow a direct interaction between ONOO- and target cells. Peroxynitrite caused a concentration-dependent release of aspartate but not of glutamate from dissociated cerebellar granule neurones. Peroxyni-triteinduced aspartate release was inhibited by dithiothreitol, tetrodotoxin, and in Na+-deprived solutions and not affected by EGTA or pre-incubation with the cytosolic Ca2+ chelator BAPTA/ AM. Peroxynitrite also induced an increase in intracellular Ca2+ concentration which was not affected in the presence of EGTA. These data show that ONOO- causes release of aspartate from cerebellar granule neurones and that this effect might arise from an alteration of Na+ membrane permeability leading subsequently to reversal of a Na+-dependent plasma membrane transporter of this excitatory amino acid. In addition, ONOO- alters Ca2+ homeostasis likely due to Na+ overload. Taken together, these findings may help and elucidate some of the intimate mechanisms of NO-induced neuronal damage in pathological circumstances.  相似文献   

16.

1. 1. (Mg2+ + Ca2+) ATPases of microsomal and synaptic membrane preparations from immature and adult rat brain were activated by calcium (0.1–10 μM), maximal activation was found at 3 μM. The increase in (Mg2+ + Ca2+) ATPase seen during development was greatest in the synaptic membrane preparations.

2. 2. At 37°C both Na+ or K+ at concentrations higher than 30 mM inhibited the microsomal Mg2+ ATPase, but the (Mg2+ + Ca2+) ATPase was stimulated by both Na+ and K+. Synaptic membrane Mg2+ ATPase was inhibited by concentrations higher than 100 mM K+; Na+ however stimulated this enzyme at all concentrations. Much of this Na+ stimulated activity was ouabain sensitive. Synaptic membrane (Mg2+ + Ca2+) ATPase was stimulated by Na+ or K+, this stimulation follows approximate saturation kinetics with an apparent Km of 18.8 mM Na+ or K+.

3. 3. Arrhenius plots of microsomal (Mg2+ + Ca2+) ATPase were curvilinear, but two intersecting lines with a break at 20°C could be fitted. The calculated energies of activation from these lines were very similar in immature and adult preparations. The synaptic membrane preparation (adult) also gave a curvilinear plot; but two intersecting lines with a break at 25°C could be fitted to the data. These lines had slopes of 21 and 28 Kcal mole−1 above and below the break, respectively. The immature preparation when made using EDTA gave a Arrhenius plot of very similar form to the adult preparation. Without EDTA however the Arrhenius plot was complex with a plateau at 25–32°C. Pretreatment with EDTA activated the synaptic membrane (Mg2+ + Ca2+) ATPase from both immature and adult brain.

Author Keywords: Brain; ATPase; temperature; development; synaptic membranes  相似文献   


17.
To elucidate the mechanism of taurine transport across the hepatic plasma membranes, rat liver sinusoidal plasma membrane vesicles were isolated and the transport process was analyzed. In the presence of a sodium gradient across the membranes (vesicle inside less than vesicle outside), an overshooting uptake of taurine occurred. In the presence of other ion gradients (K+, Li+, and choline+), taurine uptake was very small and no such overshoot was observed. Sodium-dependent uptake of taurine occurred into an osmotically active intravesicular space. Taurine uptake was stimulated by preloading vesicles with unlabeled taurine (transstimulation) in the presence of NaCl, but not in the presence of KCl. Sodium-dependent transport followed saturation kinetics with respect to taurine concentration; double-reciprocal plots of uptake versus taurine concentration gave a straight line from which an apparent Km value of 0.38 mM and Vmax of 0.27 nmol/20 s x mg of protein were obtained. Valinomycin-induced K+-diffusion potential failed to enhance the rate of taurine uptake, suggesting that taurine transport does not depend on membrane potential. Taurine transport was inhibited by structurally related omega-amino acids, such as beta-alanine and gamma-aminobutyric acid, but not by glycine, epsilon-aminocaproic acid, or other alpha-amino acids, such as L-alanine. These results suggest that Na+-dependent uptake of taurine might occur across the hepatic sinusoidal plasma membranes via a transport system that is specific for omega-amino acids having 2-3 carbon chain length.  相似文献   

18.
The role of Na+ in Vibrio alginolyticus oxidative phosphorylation has been studied. It has been found that the addition of a respiratory substrate, lactate, to bacterial cells exhausted in endogenous pools of substrates and ATP has a strong stimulating effect on oxygen consumption and ATP synthesis. Phosphorylation is found to be sensitive to anaerobiosis as well as to HQNO, an agent inhibiting the Na+-motive respiratory chain of V. alginolyticus. Na+ loaded cells incubated in a K+ or Li+ medium fail to synthesize ATP in response to lactate addition. The addition of Na+ at a concentration comparable to that inside the cell is shown to abolish the inhibiting effect of the high intracellular Na+ level. Neither lactate oxidation nor Δω generation coupled with this oxidation is increased by external Na+ in the Na+-loaded cells. It is concluded that oxidative ATP synthesis in V. alginolyticus cells is inhibited by the artificially imposed reverse ΔPNa, i.e., [Na+]in > [Na+]out. Oxidative phosphorylation is resistant to a protonophorous uncoupler (0.1 mM CCCP) in the K+-loaded cells incubated in a high Na+ medium, i.e., when ΔpNa of the proper direction ([Na+]in < [Na+]out) is present. The addition of monensin in the presence of CCCP completely arrests the ATP synthesis. Monensin without CCCP is ineffective. Oxidative phosphorylation in the same cells incubated in a high K+ medium (ΔpNa is low) is decreased by CCCP even without monensin. Artificial formation of ΔpNa by adding 0.25 M NaCl to the K+-loaded cells (Na+ pulse) results in a temporary increase in the ATP level which spontaneously decreases again within a few minutes. Na+ pulse-induced ATP synthesis is completely abolished by monensin and is resistant to CCCP, valinomycin and HQNO. 0.05 M NaCl increases the ATP level only slightly. Thus, V. alginolyticus cells at alkaline pH represent the first example of an oxidative phosphorylation system which uses Na+ instead of H+ as the coupling ion.  相似文献   

19.
Light-dependent Ca2+ efflux via the Ca2+/H+ antiport in the photosynthetic purple sulfur bacterium Chromatium vinosum was inhibited by three phenothiazines: chlorpromazine; trifluoperazine and phenothiazine. The inhibitors had no effect on Ca2+ uptake by C. vinosum in the dark nor any effect on the light-dependent efflux of either Na+ or Tl+ catalyzed, respectively, by the C. vinosum Na+/H+ or K+/H+ antiports. Ruthenium red and LaCl3, neither of which inhibited light-dependent Ca2+ efflux in C. vinosum, markedly inhibited Ca2+ uptake in the dark by C. vinosum cells. Ruthenium red had no effect on the uptake of either Na+or the K+ analog T1+ by C. vinosum cells in the dark. These results have been interpreted in terms of two separate Ca2+ transport systems in C. vinosum: (i) a phenothiazine-sensitive and ruthenium red, La3+-insensitive Ca2+/H+ antiport responsible for Ca2+ efflux in the light; and (ii) a ruthenium red and La3+-sensitive but phenothiazine-insensitive Ca2+ uptake system.  相似文献   

20.
Isolated rat hepatocytes posses a saturable glucocorticoid uptake system with high affinity (Kd value = 2.8 ± 0.7 × 10−8 M; 318,000 ± 80,000 binding sites per cell; 317 fmol/mg protein). The initial rates of uptake decrease by about 30–40% if the cells are incubated simultaneously with [3H]corticosterone and either SH-reagents (N-ethylmaleimide and p-chloromercuriphenylsulphonate, 1 mM), metabolic inhibitors (2,4-dinitrophenol, 1 mM; and antimycin, 0.1 mM) or the Na+/K+-ATPase-inhibitors, ouabain and quercetine. These Na+/K+-ATPase-blockers exert half-maximal inhibition at 3 × 10−7 and 3 × 10−6 M, respectively. A slight increase in K+ concentration and a corresponding decrease in Na+ in the medium leads to a significant reduction in the initial uptake rate. The uptake system from the rat hepatocytes shows a clear steroid specificity, being different from the intracellular receptor. Corticosterone and progesterone are the strongest competitors, cortisol, 5- and 5β-dihydrocorticosterone, 11-deoxycorticosterone, cortisone and testosterone have an intermediate effect and only weak competition is exerted by dexamethasone and by the mineralocorticoid, aldosterone. Estradiol and estrone sulphate as well as the synthetic glucocorticoid triamcinolone acetonide are unable to inhibit initial corticosterone uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号