首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sweating responses were examined in five horses during a standardized exercise test (SET) in hot conditions (32-34 degrees C, 45-55% relative humidity) during 8 wk of exercise training (5 days/wk) in moderate conditions (19-21 degrees C, 45-55% relative humidity). SETs consisting of 7 km at 50% maximal O(2) consumption, determined 1 wk before training day (TD) 0, were completed on a treadmill set at a 6 degrees incline on TD0, 14, 28, 42, and 56. Mean maximal O(2) consumption, measured 2 days before each SET, increased 19% [TD0 to 42: 135 +/- 5 (SE) to 161 +/- 4 ml. kg(-1). min(-1)]. Peak sweating rate (SR) during exercise increased on TD14, 28, 42, and 56 compared with TD0, whereas SRs and sweat losses in recovery decreased by TD28. By TD56, end-exercise rectal and pulmonary artery temperature decreased by 0.9 +/- 0.1 and 1.2 +/- 0.1 degrees C, respectively, and mean change in body mass during the SET decreased by 23% (TD0: 10.1 +/- 0.9; TD56: 7.7 +/- 0.3 kg). Sweat Na(+) concentration during exercise decreased, whereas sweat K(+) concentration increased, and values for Cl(-) concentration in sweat were unchanged. Moderate-intensity training in cool conditions resulted in a 1.6-fold increase in sweating sensitivity evident by 4 wk and a 0.7 +/- 0.1 degrees C decrease in sweating threshold after 8 wk during exercise in hot, dry conditions. Altered sweating responses contributed to improved heat dissipation during exercise and a lower end-exercise core temperature. Despite higher SRs for a given core temperature during exercise, decreases in recovery SRs result in an overall reduction in sweat fluid losses but no change in total sweat ion losses after training.  相似文献   

2.
This study determined the plasma volume (PV) and ion responses to heat acclimation and exercise in six trained Thoroughbred horses during 21 days of exposure to heat and humidity (33 degrees C, 83% relative humidity) for 4 h/day. During the 2nd h on days 0, 3, 7, 14, and 21, horses performed a standardized treadmill test, running at 50% of peak O(2) uptake until pulmonary artery temperature reached 41.5 degrees C. Heat acclimation resulted in an increase in PV from 21.3 +/- 1.1 liters on day 0 to 24.3 +/- 1.0 liters on day 14, returning to 22.6 +/- 0.9 liters on day 21. The corresponding total plasma protein contents were 1,273 +/- 53, 1,455 +/- 81, and 1,377 +/- 57 g, respectively, and increases in total plasma Na(+) plus Cl(-) content were 5,145 +/- 126, 5,749 +/- 146, and 5,394 +/- 114 mmol, respectively. Thus changes in PV were accompanied by direct changes in plasma protein and osmolyte contents. With exercise on day 0, PV decreased by 7.1 +/- 0.7% at 5 min of exercise and remained decreased (-6.7 +/- 1.3%) at 5 min of recovery. By day 21, PV decreased significantly less than on day 0 (by 5.2 +/- 0.9% at 5 min of exercise), was decreased by only 2.0 +/- 1.6% at 5 min of recovery, and was fully restored at 15 min of recovery. Plasma Na(+) concentration increased 3 meq/l during the first 5 min of exercise and was normalized by 5 min of recovery on day 0 and by end exercise on day 21. It is concluded that improved ability to regulate PV during exercise in response to heat acclimatization is associated with an increased PV and an improved conservation of Na(+).  相似文献   

3.
The aim of the present study was to evaluate the sweat loss response during short-term heat acclimation in tropical natives. Six healthy young male subjects, inhabitants of a tropical region, were heat acclimated by means of nine days of one-hour heat-exercise treatments (40+/-0 degrees C and 32+/-1% relative humidity; 50% (.)VO(2peak) on a cycle ergometer). On days 1 to 9 of heat acclimation whole-body sweat loss was calculated by body weight variation corrected for body surface area. On days 1 and 9 rectal temperature (T(re)) and heart rate (HR) were measured continuously, and rating of perceived exertion (RPE) every 4 minutes. Heat acclimation was confirmed by reduced HR (day 1 rest: 77+/-5 b.min(-1); day 9 rest: 68+/-3 b.min(-1); day 1 final exercise: 161+/-15 b.min(-1); day 9 final exercise: 145+/-11 b.min(-1), p<0.05), RPE (13 vs. 11, p<0.05) and T(re) (day 1 rest: 37.2+/-0.2 degrees C; day 9 rest: 37.0+/-0.2 degrees C; day 1 final exercise: 38.2+/-0.2 degrees C; day 9 final exercise: 37.9+/-0.1 degrees C, p<0.05). The main finding was that whole-body sweat loss increased in days 5 and 7 (9.49+/-1.84 and 9.56+/-1.86 g.m(-2).min(-1), respectively) compared to day 1 (8.31+/-1.31 g.m(-2).min(-1), p<0.05) and was not different in day 9 (8.48+/-1.02 g.m(-2).min(-1)) compared to day 1 (p>0.05) of the protocol. These findings are consistent with the heat acclimation induced adaptations and suggest a biphasic sweat response (an increase in the sweat rate in the middle of the protocol followed by return to initial values by the end of it) during short-term heat acclimation in tropical natives.  相似文献   

4.
The purpose of this study was to identify the pattern of change in the density of activated sweat glands (ASG) and sweat output per gland (SGO) during dynamic constant-workload exercise and passive heat stress. Eight male subjects (22.8 +/- 0.9 yr) exercised at a constant workload (117.5 +/- 4.8 W) and were also passively heated by lower-leg immersion into hot water of 42 degrees C under an ambient temperature of 25 degrees C and relative humidity of 50%. Esophageal temperature, mean skin temperature, sweating rate (SR), and heart rate were measured continuously during both trials. The number of ASG was determined every 4 min after the onset of sweating, whereas SGO was calculated by dividing SR by ASG. During both exercise and passive heating, SR increased abruptly during the first 8 min after onset of sweating, followed by a slower increase. Similarly for both protocols, the number of ASG increased rapidly during the first 8 min after the onset of sweating and then ceased to increase further (P > 0.05). Conversely, SGO increased linearly throughout both perturbations. Our results suggest that changes in forearm sweating rate rely on both ASG and SGO during the initial period of exercise and passive heating, whereas further increases in SR are dependent on increases in SGO.  相似文献   

5.
This study investigates the effects of a short-term aerobic training program in a hot environment on thermoregulation, blood parameters, sweat secretion and composition in tropic-dwellers who have been exposed to passive heat. Sixteen healthy Malaysian-Malay male volunteers underwent heat acclimation (HA) by exercising on a bicycle ergometer at 60% of VO2max for 60 min each day in a hot environment (Ta: 31.1+/-0.1 degrees C, rh: 70.0+/-4.4%) for 14 days. All parameters mentioned above were recorded on Day 1 and at the end of HA (Day 16). On these two days, subjects rested for 10 min, then cycled at 60% of VO2max for 60 min and rested again for 20 min (recovery) in an improvised heat chamber. Rectal temperature (Tre), mean skin temperature (Tsk) heart rate (HR), ratings of perceived exertion (RPE), thermal sensation (TS), local sweat rate and percent dehydration were recorded during the test. Sweat concentration was analysed for sodium [Na+]sweat and potassium. Blood samples were analysed for biochemical changes, electrolytes and hematologic indices. Urine samples were collected before and after each test and analysed for electrolytes.After the period of acclimation the percent dehydration during exercise significantly increased from 1.77+/-0.09% (Day 1) to 2.14+/-0.07% (Day 16). Resting levels of hemoglobin, hematocrit and red blood cells decreased significantly while [Na+]sweat increased significantly. For Tre and Tsk there were no differences at rest. Tre, HR, RPE, TS, plasma lactate concentration, hemoglobin and hematocrit at the 40th min of exercise were significantly lower after the period of acclimation but mean corpuscular hemoglobin and serum osmolality were significantly higher while no difference was seen in [Na+]sweat and Tsk. It can be concluded that tropic-dwelling subjects, although exposed to prolonged passive heat exposure, were not fully heat acclimatized. To achieve further HA, they should gradually expose themselves to exercise-heat stress in a hot environment.  相似文献   

6.
Two potential mechanisms, reduced skin blood flow (SBF) and sweating rate (SR), may be responsible for elevated intestinal temperature (T(in)) during exercise after bed rest and spaceflight. Seven men underwent 13 days of 6 degrees head-down bed rest. Pre- and post-bed rest, subjects completed supine submaximal cycle ergometry (20 min at 40% and 20 min at 65% of pre-bed rest supine peak exercise capacity) in a thermoneutral room. After bed rest, T(in) was elevated at rest (+0.31 +/- 0.12 degrees C) and at the end of exercise (+0.33 +/- 0.07 degrees C). Percent increase in SBF during exercise was less after bed rest (211 +/- 53 vs. 96 +/- 31%; P < or = 0.05), SBF/T(in) threshold was greater (37.09 +/- 0.16 vs. 37.33 +/- 0.13 degrees C; P < or = 0.05), and slope of SBF/T(in) tended to be reduced (536 +/- 184 vs. 201 +/- 46%/ degrees C; P = 0.08). SR/T(in) threshold was delayed (37.06 +/- 0.11 vs. 37.34 +/- 0.06 degrees C; P < or = 0.05), but the slope of SR/T(in) (3.45 +/- 1.22 vs. 2.58 +/- 0.71 mg x min-1 x cm-2 x degrees C-1) and total sweat loss (0.42 +/- 0.06 vs. 0.44 +/- 0.08 kg) were not changed. The higher resting and exercise T(in) and delayed onset of SBF and SR suggest a centrally mediated elevation in the thermoregulatory set point during bed rest exposure.  相似文献   

7.
The influence of hyperhydration on thermoregulatory function was tested in 8 male volunteers. The subjects performed cycle exercise in the upright position at 52% Vo2max for 45 min in a thermoneutral (Ta = 23 degrees C) environment. The day after the control exercise the subjects were hyperhydrated with tap water (35 ml X kg-1 of body weight) and then performed the same physical exercise as before. Total body weight loss was lower after hyperhydration (329 +/- 85 g) than during the control exercise (442 +/- 132 g), p less than 0.05. The decrease in weight loss after hyperhydration was probably due to a decrease in dripped sweat (58 +/- 64 and 157 +/- 101 g, p less than 0.05). With hyperhydration delay in onset of sweating was reduced from 5.8 +/- 3.2 to 3.7 +/- 2.0 min (p less than 0.05), and rectal temperature increased less (0.80 +/- 0.20 and 0.60 +/- 0.10 degrees C, p less than 0.01). The efficiency of sweating was higher in hyperhydrated (81.4%) than in euhydrated subjects (57.1%), p less than 0.01. It is concluded that hyperhydration influences thermoregulatory function in exercising men by shortening the delay in onset of sweating and by decreasing the quantity of dripped sweat. As a result, the increases in body temperature in hyperhydrated exercising men are lower than in normally hydrated individuals.  相似文献   

8.
To investigate how the sweating response to a sustained handgrip exercise depends on changes in the exercise intensity, the sweating response to exercise was measured in eight healthy male subjects. Each subject lay in the supine position in a climatic chamber (35 degrees C and 50% relative humidity) for approximately 60 min. This exposure caused sudomotor activation by increasing skin temperature without a marked change in internal temperature. After this period, each subject performed isometric handgrip exercise [15, 30, 45, and 60% maximal voluntary contraction (MVC)] for 60 s. Although esophageal and mean skin temperatures did not change with a rise in exercise intensity and were similar at all exercise intensities, the sweating rate (SR) on the forearm increased significantly (P < 0.05) from baseline (0.094 +/- 0.021 mg. cm(-2). min(-1) at 30% MVC, 0.102 +/- 0.022 mg. cm(-2). min(-1) at 45% MVC, 0.059 +/- 0.009 mg. cm(-2). min(-1) at 60% MVC) in parallel with exercise intensity above exercise intensity at 30% MVC (0.121 +/- 0.023 mg. cm(-2). min(-1) at 30% MVC, 0.242 +/- 0.051 mg. cm(-2). min(-1) at 45% MVC, 0.290 +/- 0.056 mg. cm(-2). min(-1) at 60% MVC). Above 45% MVC, SR on the palm increased significantly from baseline (P < 0.05). Although SR on the forearm and palm tended to increase with a rise in exercise intensity, there was a difference in the time courses of SR between sites. SR on the palm showed a plateau after abrupt increase, whereas SR on the forearm increased progressively during exercise. These results suggest that the increase in SR with the increase in sustained handgrip exercise intensity is due to nonthermal factors and that the magnitude of these factors during the exercise may be responsible for the magnitude of SR.  相似文献   

9.
Kingston, Janene K., Raymond J. Geor, and Laura JillMcCutcheon. Rate and composition of sweat fluid losses areunaltered by hypohydration during prolonged exercise in horses.J. Appl. Physiol. 83(4):1133-1143, 1997. Rate and ionic composition of sweat fluid losses and partitioning of evaporative heat loss into respiratory and cutaneous components were determined in six horses during three 15-km phases of exercise at ~40% of maximalO2 uptake. Pattern of change insweat rate (SR) and composition was similar during each phase. SRincreased rapidly for the first 20 min of exercise but remained at~24-28ml · m2 · min1during the remainder of each phase. Similarly, the concentrations of Naand Cl in sweat increased until 30 min of exercise but were unchangedthereafter. Sweat osmolality and concentrations of Na and Cl werepositively correlated with SR. Sweat K concentration decreased duringexercise but was not correlated with SR. Fluid losses were 33.8 ± 1.5 liters, resulting in decreases of ~21% in plasma volume and~11% in total body water. The ~6% hypohydration was notassociated with an alteration in SR, sweat composition, or heatstorage. Respiratory and cutaneous evaporative heat loss represented~23 and 70%, respectively, of the total heat dissipated, and thepartitioning of heat loss was similar in each exercise phase. Weconclude that SR and the relative proportions of respiratory andcutaneous evaporative heat loss are unchanged in horses during prolonged low-intensity exercise despite moderate hypohydration.

  相似文献   

10.
Spaceflight and its bed rest analog [6 degrees head-down tilt (HDT)] decrease plasma and blood volume and aerobic capacity. These responses may be associated with impaired thermoregulatory responses observed during exercise and passive heating after HDT exposure. This project tested the hypothesis that dynamic exercise during 13 days of HDT bed rest preserves thermoregulatory responses. Throughout HDT bed rest, 10 subjects exercised for 90 min/day (75% of pre-HDT maximum heart rate; supine). Before and after HDT bed rest, each subject exercised in the supine position at the same workload in a 28 degrees C room. The internal temperature (Tcore) threshold for the onset of sweating and cutaneous vasodilation, as well as the slope of the relationship between the elevation in Tcore relative to the elevation in sweat rate (SR) and cutaneous vascular conductance (CVC; normalized to local heating maximum), were quantified pre- and post-HDT. Tcore thresholds for the onset of cutaneous vasodilation on the chest and forearm (chest: 36.79 +/- 0.12 to 36.94 +/- 0.13 degrees C, P = 0.28; forearm: 36.76 +/- 0.12 to 36.91 +/- 0.11 degrees C, P = 0.16) and slope of the elevation in CVC relative to Tcore (chest: 77.9 +/- 14.2 to 80.6 +/- 17.2%max/ degrees C; P = 0.75; forearm: 76.3 +/- 11.8 to 67.5 +/- 14.3%max/ degrees C, P = 0.39) were preserved post-HDT. Moreover, the Tcore threshold for the onset of SR (36.66 +/- 0.12 to 36.74 +/- 0.10 degrees C; P = 0.36) and the slope of the relationship between the elevation in SR and the elevation in Tcore (1.23 +/- 0.19 to 1.01 +/- 0.14 mg x cm(-2) x min(-1) x degrees C(-1); P = 0.16) were also maintained. Finally, after HDT bed rest, peak oxygen uptake and plasma and blood volumes were not different relative to pre-HDT bed rest values. These data suggest that dynamic exercise during this short period of HDT bed rest preserves thermoregulatory responses.  相似文献   

11.
The hypothesis that the magnitude of the postexercise onset threshold for sweating is increased by the intensity of exercise was tested in eight subjects. Esophageal temperature was monitored as an index of core temperature while sweat rate was measured by using a ventilated capsule placed on the upper back. Subjects remained seated resting for 15 min (no exercise) or performed 15 min of treadmill running at either 55, 70, or 85% of peak oxygen consumption (V(o2 peak)) followed by a 20-min seated recovery. Subjects then donned a liquid-conditioned suit used to regulate mean skin temperature. The suit was first perfused with 20 degrees C water to control and stabilize skin and core temperature before whole body heating. Subsequently, the skin was heated ( approximately 4.0 degrees C/h) until sweating occurred. Exercise resulted in an increase in the onset threshold for sweating of 0.11 +/- 0.02, 0.23 +/- 0.01, and 0.33 +/- 0.02 degrees C above that measured for the no-exercise resting values (P < 0.05) for the 55, 70, and 85% of V(o2 peak) exercise conditions, respectively. We did note that there was a greater postexercise hypotension as a function of exercise intensity as measured at the end of the 20-min exercise recovery. Thus it is plausible that the increase in postexercise threshold may be related to postexercise hypotension. It is concluded that the sweating response during upright recovery is significantly modified by exercise intensity and may likely be influenced by the nonthermal baroreceptor reflex adjustments postexercise.  相似文献   

12.
This study was undertaken to investigate whether part of the ammonia formed during muscular exercise was excreted with the sweat. Male medical students volunteered for the experiment. They exercised 30 min on a bicycle ergometer at 80 and 40% of the predetermined maximal O2 uptake (VO2max). Exercise at 80% VO2max was performed twice, at room temperature (20 degrees C) and in a cold room (0 degrees C), whereas exercise at 40% was performed only at room temperature (20 degrees C). Blood was collected from the antecubital vein immediately before and after exercise. Sweat was collected from the hypogastric region by use of gauze pads. It was shown that the plasma ammonia level was elevated after exercise at 80% VO2max and remained stable after exercise at 40% VO2max. The volume of sweat produced during exercise at 80% VO2max at 20 degrees C was 428 +/- 138 ml and at 0 degrees C 245 +/- 86 ml and during exercise at 40% VO2max was 183 +/- 69 ml. The ammonia concentration in the sweat after exercise at 80% VO2max at 20 degrees C was 7,140 mumol/l and at 0 degrees C 11,816 mumol/l. After exercise at 40% VO2max, it was 2,076 mumol/l. The total ammonia lost through the sweat during exercise at 80% VO2max was similar at both temperatures, despite the difference in the sweat volume (at 20 degrees C, 3,360 +/- 2,080 mumol; at 0 degrees C, 3,310 +/- 1,250 mumol). During exercise at 40% VO2max, it was 350 +/- 230 mumol. These results show that part of ammonia formed during exercise is lost with sweat. The amount lost increases with increased work rate and the plasma ammonia concentration.  相似文献   

13.
Appropriate quantification of analytical and biological variation of thermoregulatory sweating has important practical utility for research design and statistical analysis. We sought to examine contributors to variability in local forearm sweating rate (SR) and sweating onset (SO) and to evaluate the potential for using bilateral measurements. Two women and eight men (26 ± 9 yr; 79 ± 12 kg) completed 5 days of heat acclimation and walked (1.8 l/min VO(2)) on three occasions for 30 min in 40°C, 20% RH, while local SR and SO were measured. Local SR measures among days were not different (2.14 ± 0.72 vs. 2.02 ± 0.79 vs. 2.31 ± 0.72 mg·cm(2)·min(-1), P = 0.19) nor was SO (10.47 ± 2.54 vs. 10.04 ± 2.97 vs. 9.87 ± 3.44 min P = 0.82). Bilateral SR (2.14 ± 0.72 vs. 2.16 ± 0.71 mg·cm(2)·min(-1), P = 0.56) and SO (10.47 ± 2.54 vs. 10.83 ± 2.48 min, P = 0.09) were similar and differences were ≤ 1 SD of day-to-day differences for a single forearm. Analytical imprecision (CV(a)), within (CV(i))-, and between (CV(g))-subjects' coefficient of variation for local SR were 2.4%, 22.3%, and 56.4%, respectively, and were 0%, 9.6%, and 41%, respectively, for SO. We conclude: 1) technologically, sweat capsules contribute negligibly to sweat measurement variation; 2) bilateral measures of SR and SO appear interchangeable; 3) when studying potential factors affecting sweating, changes in SO afford a more favorable signal-to-noise ratio vs. changes in SR. These findings provide a quantitative basis for study design and optimization of power/sample size analysis in the evaluation of thermoregulatory sweating.  相似文献   

14.
Bed rest (BR) deconditioning causes excessive increase of exercise core body tempera-ture, while aerobic training improves exercise thermoregulation. The study was designed to determine whether 3 days of 6 degrees head-down bed rest (HDBR) affects body temperature and sweating dynamics during exercise and, if so, whether endurance training before HDBR modifies these responses. Twelve healthy men (20.7+/-0.9 yrs, VO2max: 46+/-4 ml x kg(-1) x min(-1) ) underwent HDBR twice: before and after 6 weeks of endurance training. Before and after HDBR, the subjects performed 45 min sitting cycle exercise at the same workload equal to 60% of VO2max determined before training. During exercise the VO2, HR, tympanic (Ttymp) and skin (Tsk) temperatures were recorded; sweating dynamics was assayed from a ventilated capsule on chest. Training increased VO2max by 12.1% (p<0.001). Resting Ttymp increased only after first HDBR (by 0.22 +/- 0.08 degrees C, p<0.05), while exercise equilibrium levels of Ttymp were increased (p<0.05) by 0.21 +/- 0.07 and 0.26 +/- 0.08 degrees C after first and second HDBR, respectively. Exercise mean Tsk tended to be lower after both HDBR periods. Total sweat loss and time-course of sweating responses were similar in all exercise tests. The sweating threshold related to Ttymp was elevated (p<0.05) only after first HDBR. In conclusion: six-week training regimen prevents HDBR-induced elevation of core temperature (Ttymp) at rest but not during ex-ercise. The post-HDBR increases of Ttymp without changes in sweating rate and the tendency for lower Tsk suggest an early (<3d) influence of BR on skin blood flow.  相似文献   

15.
This study compared measured serum [Na(+)] (S([Na+]); brackets denote concentration) with that predicted by the Nguyen-Kurtz equation after manipulating ingested [Na(+)] and changes in body mass (DeltaBM) during prolonged running in the heat. Athletes (4 men, 4 women; 22-36 yr) ran for 2 h, followed by a run to exhaustion and 1-h recovery. During exercise and recovery, subjects drank a 6% carbohydrate solution without Na(+) (Na(+)0), 6% carbohydrate solution with 18 mmol/l Na(+) (Na(+)18), or 6% carbohydrate solution with 30 mmol/l Na(+) (Na(+)30) to maintain BM (0%DeltaBM), increase BM by 2%, or decrease BM by 2% or 4% in 12 separate trials. Net fluid, Na(+), and K(+) balance were measured to calculate the Nguyen-Kurtz predicted S([Na+]) for each trial. For all beverages, predicted and measured S([Na+]) were not significantly different during the 0%, -2%, and -4%DeltaBM trials (-0.2 +/- 0.2 mmol/l) but were significantly different during the +2%DeltaBM trials (-2.6 +/- 0.5 mmol/l). Overall, Na(+) consumption attenuated the decline in S([Na+]) (-2.0 +/- 0.5, -0.9 +/- 0.5, -0.5 +/- 0.5 mmol/l from pre- to postexperiment of the 0%DeltaBM trials for Na(+)30, Na(+)18, and Na(+)0, respectively) but the differences among beverages were not statistically significant. Beverage [Na(+)] did not affect performance; however, time to exhaustion was significantly shorter during the -4% (8 +/- 3 min) and -2% (14 +/- 3 min) vs. 0% (22 +/- 5 min) and +2% (26 +/- 6 min) DeltaBM trials. In conclusion, when athletes maintain or lose BM, changes in S([Na+]) can be accurately predicted by changes in the mass balance of fluid, Na(+), and K(+) during prolonged running in the heat.  相似文献   

16.
The purpose of this study was to identify whether baroreceptor unloading was responsible for less efficient heat loss responses (i.e., skin blood flow and sweat rate) previously reported during inactive compared with active recovery after upright cycle exercise (Carter R III, Wilson TE, Watenpaugh DE, Smith ML, and Crandall CG. J Appl Physiol 93: 1918-1929, 2002). Eight healthy adults performed two 15-min bouts of supine cycle exercise followed by inactive or active (no-load pedaling) supine recovery. Core temperature (T(core)), mean skin temperature (T(sk)), heart rate, mean arterial blood pressure (MAP), thoracic impedance, central venous pressure (n = 4), cutaneous vascular conductance (CVC; laser-Doppler flux/MAP expressed as percentage of maximal vasodilation), and sweat rate were measured throughout exercise and during 5 min of recovery. Exercise bouts were similar in power output, heart rate, T(core), and T(sk). Baroreceptor loading and thermal status were similar during trials because MAP (90 +/- 4, 88 +/- 4 mmHg), thoracic impedance (29 +/- 1, 28 +/- 2 Omega), central venous pressure (5 +/- 1, 4 +/- 1 mmHg), T(core) (37.5 +/- 0.1, 37.5 +/- 0.1 degrees C), and T(sk) (34.1 +/- 0.3, 34.2 +/- 0.2 degrees C) were not significantly different at 3 min of recovery between active and inactive recoveries, respectively; all P > 0.05. At 3 min of recovery, chest CVC was not significantly different between active (25 +/- 6% of maximum) and inactive (28 +/- 6% of maximum; P > 0.05) recovery. In contrast, at this time point, chest sweat rate was higher during active (0.45 +/- 0.16 mg.cm(-2).min(-1)) compared with inactive (0.34 +/- 0.19 mg.cm(-2).min(-1); P < 0.05) recovery. After exercise CVC and sweat rate are differentially controlled, with CVC being primarily influenced by baroreceptor loading status while sweat rate is influenced by other factors.  相似文献   

17.
Thermoregulatory responses during heat acclimation were compared between nine young (mean age 21.2 yr) and nine middle-aged men (mean age 46.4 yr) who were matched (P greater than 0.05) for body weight, surface area, surface area-to-weight ratio, percent body fat, and maximal aerobic power. After evaluation in a comfortable environment (22 degrees C, 50% relative humidity), the men were heat acclimated by treadmill walking (1.56 m/s, 5% grade) for two 50-min exercise bouts separated by 10 min of rest for 10 consecutive days in a hot dry (49 degrees C ambient temperature, 20% relative humidity) environment. During the first day of heat exposure performance time was 27 min longer (P less than 0.05) for the middle-aged men, whereas final rectal and skin temperatures and heart rate were lower, and final total body sweat loss was higher (P less than 0.05) compared with the young men. These thermoregulatory advantages for the middle-aged men persisted for the first few days of exercise-heat acclimation (P less than 0.05). After acclimation no thermoregulatory or performance time differences were observed between groups (P greater than 0.05). Sweating sensitivity, esophageal temperature at sweating onset, and the sweating onset time did not differ (P greater than 0.05) between groups either pre- or postacclimatization. Plasma osmolality and sodium concentration were slightly lower for the young men both pre- and postacclimatization; however, both groups had a similar percent change in plasma volume from rest to exercise during these tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We tested the hypothesis that local sweat rates would not display a systematic postadaptation redistribution toward the limbs after humid heat acclimation. Eleven nonadapted males were acclimated over 3 wk (16 exposures), cycling 90 min/day, 6 days/wk (40 degrees C, 60% relative humidity), using the controlled-hyperthermia acclimation technique, in which work rate was modified to achieve and maintain a target core temperature (38.5 degrees C). Local sudomotor adaptation (forehead, chest, scapula, forearm, thigh) and onset thresholds were studied during constant work intensity heat stress tests (39.8 degrees C, 59.2% relative humidity) conducted on days 1, 8, and 22 of acclimation. The mean body temperature (Tb) at which sweating commenced (threshold) was reduced on days 8 and 22 (P < 0.05), and these displacements paralleled the resting thermoneutral Tb shift, such that the Tb change to elicit sweating remained constant from days 1 to 22. Whole body sweat rate increased significantly from 0.87 +/- 0.06 l/h on day 1 to 1.09 +/- 0.08 and 1.16 +/- 0.11 l/h on days 8 and 22, respectively. However, not all skin regions exhibited equivalent relative sweat rate elevations from day 1 to day 22. The relative increase in forearm sweat rate (117 +/- 31%) exceeded that at the forehead (47 +/- 18%; P < 0.05) and thigh (42 +/- 16%; P < 0.05), while the chest sweat rate elevation (106 +/- 29%) also exceeded the thigh (P < 0.05). Two unique postacclimation observations arose from this project. First, reduced sweat thresholds appeared to be primarily related to a lower resting Tb, and more dependent on Tb change. Second, our data did not support the hypothesis of a generalized and preferential trunk-to-limb sweat redistribution after heat acclimation.  相似文献   

19.
Body temperature regulation was studied in 6 male subjects during an acclimation procedure involving uninterrupted heat exposure for 5 successive days and nights in a hot dry environment (ambient temperature = 35 degrees C, dew-point temperature = 7 degrees C; air velocity = 0.2 m.s-1). Data were obtained at rest and during exercise (relative mechanical workload = 35% VO2max). At rest, hourly measurements were made of oesophageal and 4 local skin temperatures, to allow the calculation of mean skin temperature, and of body motility and heart rate. During the working periods these measurements were made at 5 min intervals. Hourly whole-body weight loss was measured at rest on a sensitive platform scale while in the working condition just before starting and immediately after completing the bicycle exercise. The results show that, in both exercise and at rest, the successive heat exposures increased the sweat gland output during the first 3 days. Afterwards, sweat rate decreased without any corresponding change in body temperature. For the fixed workload, the sweat rate decline was associated with a decrease in circulatory strain. Adjustments in both sweating and circulatory mechanisms occur in the first 3 days of continuous heat exposure. The overall sweat rate decline could involve a redistribution of the regional sweating rates which enhances the sweat gland activities of skin areas with maximal evaporative efficiencies.  相似文献   

20.
This investigation tested the hypothesis that cholinergic sweat function of individuals with multiple sclerosis (MS) (MS-Con; n = 10) is diminished relative to matched healthy control subjects (Con; n = 10). In addition, cholinergic sweat function was determined before and after 15 wk of aerobic training in a subgroup of individuals with MS (MS-Ex; n = 7). Cholinergic sweating responses were assessed via pilocarpine iontophoresis on ventral forearm skin. A collection disk placed over the stimulated area collected sweat for 15 min. Sweat rate (SR) was calculated by dividing sweat collector volume by collection area and time. Iodine-treated paper was applied to the stimulated area to measure number of activated sweat glands (ASG). Sweat gland output (SGO) was calculated by dividing SR by density of glands under the collector. Sweat gland function was determined in MS-Ex to test the hypothesis that exercise training would increase sweating responses. No differences in ASG were observed between MS-Con and Con. SR and SGO in MS-Con [0.18 mg.cm(-2).min(-1) (SD 0.08); 1.74 microg.gland(-1).min(-1) (SD 0.79), respectively] were significantly lower (P < or = 0.05) than in Con [0.27 mg.cm(-2).min(-1) (SD 0.10); 2.43 microg.gland(-1).min(-1) (SD 0.69)]. Aerobic exercise training significantly (P < or = 0.05) increased peak aerobic capacity in MS-Ex [1.86 (SD 0.75) vs. 2.10 (SD 0.67) l/min] with no changes in ASG, SR, and SGO. Sweat gland function in individuals with MS is impaired relative to healthy controls. Fifteen weeks of aerobic training did not increase stimulated sweating responses in individuals with MS. Diminished peripheral sweating responses may be a consequence of impairments in autonomic control of sudomotor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号