首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
One hundred maize zygotic embryos microdissected at the transition stage were used to construct a cDNA library after non-selective PCR (NS-PCR) amplification of whole cDNA populations. The library contains 2.3 × 105 recombinants and two different calmodulin cDNAs were cloned using a heterologous probe from petunia. Calmodulin expression was confirmed throughout maize embryogenesis at the mRNA, amplified cDNA and protein levels. Sequence analysis suggests a maize origin for both clones and negligible nucleotide changes linked to PCR. This library is the first described for early plant embryos and represents a breakthrough to isolate genes involved in embryo differentiation.  相似文献   

2.
3.
4.
X Lin  G J Hwang    J L Zimmerman 《Plant physiology》1996,112(3):1365-1374
The early events in plant embryogenesis are critical for pattern formation, since it is during this process that the primary apical meristems and the embryo polarity axis are established. However, little is known about the molecular events that are unique to the early stages of embryogenesis. This study of gene expression during plant embryogenesis is focused on identifying molecular markers from carrot (Daucus carota) somatic embryos and characterizing the expression and regulation of these genes through embryo development. A cDNA library, prepared from polysomal mRNA of globular embryos, was screened using a subtracted probe; 49 clones were isolated and preliminarily characterized. Sequence analysis revealed a large set of genes, including many new genes, that are expressed in a variety of patterns during embryogenesis and may be regulated by different molecular mechanisms. To our knowledge, this group of clones represents the largest collection of embryo-enhanced genes isolated thus far, and demonstrates the utility of the subtracted-probe approach to the somatic embryo system. It is anticipated that many of these genes may serve as useful molecular markers for early embryo development.  相似文献   

5.
Embryogenic tissues of white spruce [Picea glauca (Moench) Voss] remain in an early developmental stage while cultured on 2,4-dichlorophenoxyacetic acid and N6-benzyladenine, but develop to cotyledonary embryos when these phytohormones are replaced by abscisic acid. Twenty-eight cDNAs were isolated from cotyledonary embryos by differential screening against immature embryo and non-embryonic tissues. Temporal expression patterns of these cDNAs during ABA-stimulated somatic embryo development were observed. This showed that clones could be allocated to various groups, including embryo-abundant, embryo-maturation-induced, and those whose expression was modulated during embryo development, germination or in non-embryogenic tissues. Expression corresponding to these cDNA clones showed that there were various responses to exogenous ABA or polyethylene glycol during a period of 48 h. Analyses of DNA and predicted amino acid sequence revealed that 12 of 28 cDNA clones had no known homologues, while others were predicted to encode different late-embryogenesis-abundant proteins, early methionine-labelled proteins, storage proteins, heat-shock proteins, glycine-rich cell wall protein, metallothionein-like protein and some other metabolic enzymes.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - ABA abscisic acid - BA N6-benzyladenine - cDNA complementary deoxyribonucleic acid - Em early methionine-labelled - HSP heat-shock protein - LEA late embryogenesis abundant - PEG polyethylene glycol The authors thank Mr. Terry Bethune for his assistance, and Dr. Larry Pelcher, Mr. Barry Panchuk and Mr. Don Schwab for DNA sequencing and primer synthesis. This is National Research Council of Canada publication number 38929.  相似文献   

6.
7.
Most genes with regulatory functions in embryogenesis are expressed in highly specific patterns, suggesting that expression patterns can serve as criteria to define potential candidates fur developmentally relevant genes. To isolate such genes, we selected and partially sequenced 80 cDNA clones from a 10.5-day mouse embryo library. Forty-one clones that represented novel mouse genes were analyzed for expression in embryos of the same stage by whole-mount in situ hybridization. A high proportion (24%) of these genes, including a homologue of the Drosophila Delta gene, were expressed in specific spatially restricted patterns, suggesting that selection based on expression patterns is a useful strategy to isolate novel genes that may play pivotal roles in mammalian development.  相似文献   

8.
9.
Seeds of the longcell mutant in maize (Zea mays L) have a defective-kernel phenotype: the embryo aborts at the early coleoptilar stage and the endosperm is reduced in size. Mutant embryos have severe alterations in morphogenesis. They have a suspensor-, an embryo axis- and a scutellum-like structure, but the shoot apical meristem (SAM) is not formed. Scanning electron microscopy showed that most of the cells in longcell embryos are tubular and abnormally enlarged. The level of expression of several genes involved in basic metabolism is not severely affected during early and mid embryogenesis, but storage molecule accumulation is reduced. Genes which in normal conditions are only expressed after germination, are expressed during kernel development in the longcell seeds. Mutant embryos undergo cell death in late embryogenesis. Nuclei in dying embryos are TUNEL positive, and different genes coding for hydrolytic enzymes are up-regulated. The expression of genes related to oxidative stress is also altered in longcell embryos. These results lead us to suggest that the longcell mutant may be cytokinesis-defective.  相似文献   

10.
Gene expression patterns were profiled during somatic embryogenesis in a regeneration-proficient maize hybrid line, Hi II, in an effort to identify genes that might be used as developmental markers or targets to optimize regeneration steps for recovering maize plants from tissue culture. Gene expression profiles were generated from embryogenic calli induced to undergo embryo maturation and germination. Over 1,000 genes in the 12,060 element arrays showed significant time variation during somatic embryo development. A substantial number of genes were downregulated during embryo maturation, largely histone and ribosomal protein genes, which may result from a slowdown in cell proliferation and growth during embryo maturation. The expression of these genes dramatically recovered at germination. Other genes up-regulated during embryo maturation included genes encoding hydrolytic enzymes (nucleases, glucosidases and proteases) and a few storage genes (an α-zein and caleosin), which are good candidates for developmental marker genes. Germination is accompanied by the up-regulation of a number of stress response and membrane transporter genes, and, as expected, greening is associated with the up-regulation of many genes encoding photosynthetic and chloroplast components. Thus, some, but not all genes typically associated with zygotic embryogenesis are significantly up or down-regulated during somatic embryogenesis in Hi II maize line regeneration. Although many genes varied in expression throughout somatic embryo development in this study, no statistically significant gene expression changes were detected between total embryogenic callus and callus enriched for transition stage somatic embryos.Supplementary material is available for this article at  相似文献   

11.
12.
13.
14.
Gene imprinting is a widely observed epigenetic phenomenon in maize endosperm; however, whether it also occurs in the maize embryo remains controversial. Here, we used high‐throughput RNA sequencing on laser capture microdissected and manually dissected maize embryos from reciprocal crosses between inbred lines B73 and Mo17 at six time points (3–13 days after pollination, DAP) to analyze allelic gene expression patterns. Co‐expression analysis revealed sequential gene activation during maize embryo development. Gene imprinting was observed in maize embryos, and a greater number of imprinted genes were identified at early embryo stages. Sixty‐four strongly imprinted genes were identified (at the threshold of 9:1) on manually dissected embryos 5–13 DAP (more imprinted genes at 5 DAP). Forty‐one strongly imprinted genes were identified from laser capture microdissected embryos at 3 and 5 DAP (more imprinted genes at 3 DAP). Furthermore, of the 56 genes that were completely imprinted (at the threshold of 99:1), 36 were not previously identified as imprinted genes in endosperm or embryos. In situ hybridization demonstrated that most of the imprinted genes were expressed abundantly in maize embryonic tissue. Our results shed lights on early maize embryo development and provide evidence to support that gene imprinting occurs in maize embryos.  相似文献   

15.
16.
17.
18.
19.
20.
Prior analyses established that the maize (Zea mays L.) gl8a gene encodes 3-ketoacyl reductase, a component of the fatty acid elongase required for the biosynthesis of very long chain fatty acids (VLCFAs). A paralogous gene, gl8b, has been identified that is 96% identical to gl8a. The gl8a and gl8b genes map to syntenic chromosomal regions, have similar, but not identical, expression patterns, and encode proteins that are 97% identical. Both of these genes are required for the normal accumulation of cuticular waxes on seedling leaves. The chemical composition of the cuticular waxes from gl8a and gl8b mutants indicates that these genes have at least overlapping, if not redundant, functions in cuticular wax biosynthesis. Although gl8a and gl8b double mutant kernels have endosperms that cannot be distinguished from wild-type siblings, these kernels are non-viable because their embryos fail to undergo normal development. Double mutant kernels accumulate substantially reduced levels of VLCFAs. VLCFAs are components of a variety of compounds, for example, cuticular waxes, suberin, and sphingolipids. Consistent with their essential nature in yeast, the accumulation of the ceramide moiety of sphingolipids is substantially reduced and their fatty acid composition altered in gl8a and gl8b double mutant kernels relative to wild-type kernels. Hence, we hypothesize that sphingolipids or other VLCFA-containing compounds are essential for normal embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号