首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The use of hexamethyldisilazane (HMDS) as a drying agent was investigated in the specimen preparation for scanning electron microscopy (SEM) imaging of bacterial surface colonization on sub-bituminous coal. The ability of microbes to biofragment, ferment and generate methane from coal has sparked interest in the initial attachment and colonization of coal surfaces. HMDS represents an attractive alternative to critical point drying (CPD) in the imaging of cells on coal, negating the need for expensive equipment. Coal is easily fragmented into sub-micron particles, which can be problematic in critical point drying procedures. In this study, both individual and aggregated cells appeared well shaped with minimal occurrence of flattened cells, signifying the suitability of HMDS in cell attachment studies on sub-bituminous coal. In the absence of glucose, microcolonies of short and long cells showed similar positive results using this method. EPS shrinkage found in microcolonies was inevitable, though this enabled observation of points of attachment between cells and with coal, which would be less effective if the EPS was intact. Overall the use of HMDS drying is preferred over the more commonly used CPD method as it is safer, cheaper and more practical.  相似文献   

2.
Summary Electron microscopy (EM) has greatly helped to elucidate our understanding of bacterial structure and function. However, several recent studies have cautioned investigators about artifacts that result from the use of conventional EM preparation procedures. To avoid these problems, the use of low temperature scanning electron microscopy (LTSEM) was evaluated for examining frozen, fully hydrated specimens. Spinach leaves (Spinacia oleracea L. cv. New Jersey), which were naturally infected or inoculated with bacteria, were used as the experimental material. 1 cm segments of the infected leaves were plunge frozen in liquid nitrogen, transferred to a cryochamber for sputter coating and then moved onto a cryostage in an SEM. After observation, some of the frozen, hydrated leaf segments were transferred onto agar medium to determine whether preparation for LTSEM was nondestructive to the bacteria. The other tissue segments were chemically fixed by freeze-substitution. The results indicated that after cryopreparation and observation in the LTSEM: (i) viable bacteria, which were recovered from the leaf sample, could be cultured on agar medium for subsequent study, and (ii) the frozen samples could be freeze substituted and embedded so that transmission electron microscopic (TEM) observations could be carried out on the same specimen. In conclusion, frozen, hydrated leaf tissue infected with bacteria can be observed using LTSEM and then can be either processed for TEM observation to obtain further structural details or recovered to culture the pathogenic bacteria for supplementary studies.Abbreviations EPS extracellular polysaccharide - EM electron microscopy - LTSEM low temperature scanning electron microscopy - SEM scanning electron microscopy - TEM transmission electron microscopy - TSA tryptic soy agar - TSB tryptic soy broth Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

3.
The scanning electron microscope appearances and shrinkage of blocks of canine endocardium prepared by freeze-drying directly, by freeze-drying after replacing tissue water with tertiary butanol (2-methyl propan-2-01) and by critical point drying were compared. All three methods demonstrated endothelial cells which showed nuclear prominences, microvilli and interoellular boundaries. The microvilli varied in six and number from dog to dog hut were generally less well defined in specimens freeze-dried from water. Shrinkage due to t-butanol dehydration was significantly less than that which occurred in ethanol in the critical point drying method. Overall the reduction in surface area was significantly less in specimens freeze-dried directly at -65 C (6.8%) than in those dried from t-butanol at -20 C (15.4%) and those prepared by critical point drying (22.1%). However the amount of shrinkage observed in t-butanol treated tissue was not significantly different from that which was critical point dried. It was not possible to distinguish between comparable samples prepared by these two methods on the basis of their scanning electron microscopic appearances. Thus the relative simplicity and convenience of the t-butanol method, together with its saving of time, its use of standard freeze-drying equipment and the avoidance of ice-crystal artefact justify its consideration as an alternative method of preparing wet biological tissue for scanning electron microscopy.  相似文献   

4.
Cryo-Preservation of Roots for Scanning Electron Microscopy   总被引:3,自引:0,他引:3  
SARGENT  JOHN A. 《Annals of botany》1986,58(2):183-185
Fully hydrated roots can be examined in the scanning electronmicroscope after cryo-preservation. Shrinkage associated withdehydration by freeze-drying or critical point drying, to whichroot hairs and secreted mucigel are particularly vulnerable,is avoided. Roots, Lepidium sativum, scanning electron microscopy, cryo-preservation, fully hydrated  相似文献   

5.
Bacterial biofilms, i.e. surface-associated cells covered in hydrated extracellular polymeric substances (EPS), are often studied with high-resolution electron microscopy (EM). However, conventional desiccation and high vacuum EM protocols collapse EPS matrices which, in turn, deform biofilm appearances. Alternatively, wet-mode environmental scanning electron microscopy (ESEM) is performed under a moderate vacuum and without biofilm drying. If completely untreated, however, EPS is not electron dense and thus is not resolved well in ESEM. Therefore, this study was towards adapting several conventional SEM staining protocols for improved resolution of biofilms and EPS using ESEM. Three different biofilm types were used: 1) Pseudomonas aeruginosa unsaturated biofilms cultured on membranes, 2) P. aeruginosa cultured in moist sand, and 3) mixed community biofilms cultured on substrates in an estuary. Working with the first specimen type, a staining protocol using ruthenium red, glutaraldehyde, osmium tetroxide and lysine was optimized for best topographic resolution. A quantitative image analysis tool that maps relief, newly adopted here for studying biofilms, was used to compare micrographs. When the optimized staining and ESEM protocols were applied to moist sand cultures and aquatic biofilms, the smoothening effect that bacterial biofilms have on rough sand, and the roughening that aquatic biofilms impart on initially smooth coupons, were each quantifiable. This study thus provides transferable staining and ESEM imaging protocols suitable for a wide range of biofilms, plus a novel tool for quantifying biofilm image data.  相似文献   

6.
Most chronic and recurrent bacterial infections involve a biofilm component, the foundation of which is the extracellular polymeric substance (EPS). Extracellular DNA (eDNA) is a conserved and key component of the EPS of pathogenic biofilms. The DNABII protein family includes integration host factor (IHF) and histone‐like protein (HU); both are present in the extracellular milieu. We have shown previously that the DNABII proteins are often found in association with eDNA and are critical for the structural integrity of bacterial communities that utilize eDNA as a matrix component. Here, we demonstrate that uropathogenic Escherichia coli (UPEC) strain UTI89 incorporates eDNA within its biofilm matrix and that the DNABII proteins are not only important for biofilm growth, but are limiting; exogenous addition of these proteins promotes biofilm formation that is dependent on eDNA. In addition, we show that both subunits of IHF, yet only one subunit of HU (HupB), are critical for UPEC biofilm development. We discuss the roles of these proteins in context of the UPEC EPS.  相似文献   

7.
The scanning electron microscope appearances and shrinkage of blocks of canine endocardium prepared by freeze-drying directly, by freeze-drying after replacing tissue water with tertiary butanol (2-methyl propan-2-ol) and by critical point drying were compared. All three methods demonstrated endothelial cells which showed nuclear prominences, microvilli and intercellular boundaries. The microvilli varied in size and number from dog to dog but were generally less well defined in specimens freeze-dried from water. Shrinkage due to t-butanol dehydration was significantly less than that which occurred in ethanol in the critical point drying method. Overall the reduction in surface area was significantly less in specimens freeze-dried directly at -65 C (6.8%) than in those dried from t-butanol at -20 C (15.4%) and those prepared bly critical point drying (22.1%). However the amount of shrinkage observed in t-butanol treated tissue was not significantly different from that which was critical point dried. It was not possible to distinguish between comparable samples prepared by these two methods on the basis of their scanning electron microscopic appearances. Thus the relative simplicity and convenience of the t-butanol method, together with its saving of time, its use of standard freeze-drying equipment and the avoidance of ice-crystal artefact justify its consideration as an alternative method of preparing wet biological tissue for scanning electron microscopy.  相似文献   

8.
AIMS: To investigate the use of confocal Raman microspectroscopy (CRM) for the analysis of the structure, composition and development of fully hydrated biofilms. METHODS AND RESULTS: Pseudomonas aeruginosa PAO1 biofilms were cultured in a flow cell in minimal nutrient medium (artificial sea water) and their development was followed for up to 3 weeks. The spectroscopic signature of the biofilm cells and extracellular polymeric substances (EPS) were differentiated and their distribution in biofilm colonies and within water channels was mapped in-plane and -depth. The colonies were initially amorphous, mainly composed of cells with no detectable amount of EPS. They developed rapidly to give round colonies composed of a cellular core enclosed in a sheath of EPS. The EPS continued to increase and spread throughout the biofilm to become the dominating feature of aged colonies. Colonies with a liquid core morphology - characteristic of the seeding dispersal process - were also observed. CONCLUSIONS: This study demonstrated that CRM can be used to monitor the distribution of biofilm components in fully hydrated undisturbed biofilms over time. SIGNIFICANCE AND IMPACT OF THE STUDY: Confocal Raman microspectroscopy facilitates the analysis of hydrated, live bacterial biofilms as a function of space and time, thus making it a suitable technique for investigating the effects of various additives and environmental factors on biofilm growth.  相似文献   

9.
In this study, fixation of attached glycocalyx on the interior surfaces of polyvinyl chloride distribution pipe remnants was compared with and without ruthenium red/osmium tetroxide and, in the final preparatory phase, with chemical dehydration and critical point drying. SEM examination of interior surface of the polyvinyl chloride pipe showed varying concentrations of adherent bacteria, depending on the preparatory technique used. It was concluded that using a combination of ruthenium red/osmium tetroxide and critical point drying is the optimum method for visually demonstrating aging biofilm on the interior surface of contaminated polyvinyl chloride pipe.  相似文献   

10.
Actinidia deliciosa endosperm-derived callus culture is stable over a long period of culture. This system was used to investigate the ultrastructure of extracellular matrix occurring in morphogenic tissue. Specimens were prepared by different biological techniques (chemical fixation, liquid nitrogen fixation, glycerol substitution, critical-point drying, lyophilization) and observed by scanning electron microscopy (SEM). Fresh and wet samples were analyzed with the use of environmental scanning electron microscopy (ESEM). Extracellular matrix was observed on the surface of cell clusters as a membranous layer or reticulated network, shrunken or wrinkled, depending on the procedure. Generally, shrunken membranous layers with a globular appearance and fibrils were noted after critical-point drying and liquid nitrogen fixation. Smoother surface layers without visible fibrils and showing porosity were typically seen by environmental scanning electron microscopy. Preservation with glycerol substitution caused wrinkled appearance of examined layer. Analysis of fresh samples yielded images closer to their natural state than did critical-point drying or fixation in liquid nitrogen, but it seems best to compare the results of different visualization methods. This is the first report of ESEM observations of plant extracellular matrix and comparison with SEM images from fixed material.  相似文献   

11.
Low temperature scanning electron microscopy (LTSEM) has been employed to examine the surface morphology of chondrocyte cultures on ceramic granules. Well-established cultures on porous hydroxyapatite consist of ceramic cores overlaid and interspersed with a cellular matrix of collagen and proteoglycan (Cheung, 1985); of especial interest is the superficial layer of cells. These cells are believed, on the basis of immuno-light microscopy (Gardner et al., 1987), to be coated by an hydrated porous envelope of collagen/proteoglycan which is likely to obscure cell outlines. This relationship is confirmed by enzymic digestion of the superficial material. Post-digestion LTSEM examination of the fully hydrated preparations establishes the existence of arrays of rounded structures identified as superficial cells.  相似文献   

12.
This study aimed to characterize biofilms from the paper industry and evaluate the effectiveness of enzymatic treatments in reducing them. The extracellular polymeric substances (EPS) extracted from six industrial biofilms were studied. EPS were mainly proteins, the protein to polysaccharide ratio ranging from 1.3 to 8.6 depending on where the sampling point was situated in the paper making process. Eight hydrolytic enzymes were screened on a 24-h multi-species biofilm. The enzymes were tested at various concentrations and contact durations. Glycosidases and lipases were inefficient or only slightly efficient for biofilm reduction, while proteases were more efficient: after treatment for 24 h with pepsin, Alcalase® or Savinase®, the removal exceeded 80%. Savinase® appeared to be the most adequate for industrial conditions and was tested on an industrial biofilm sample. This enzyme led to a significant release of proteins from the EPS matrix, indicating its potential efficiency on an industrial scale.  相似文献   

13.
This study aimed to characterize biofilms from the paper industry and evaluate the effectiveness of enzymatic treatments in reducing them. The extracellular polymeric substances (EPS) extracted from six industrial biofilms were studied. EPS were mainly proteins, the protein to polysaccharide ratio ranging from 1.3 to 8.6 depending on where the sampling point was situated in the paper making process. Eight hydrolytic enzymes were screened on a 24-h multi-species biofilm. The enzymes were tested at various concentrations and contact durations. Glycosidases and lipases were inefficient or only slightly efficient for biofilm reduction, while proteases were more efficient: after treatment for 24 h with pepsin, Alcalase? or Savinase?, the removal exceeded 80%. Savinase? appeared to be the most adequate for industrial conditions and was tested on an industrial biofilm sample. This enzyme led to a significant release of proteins from the EPS matrix, indicating its potential efficiency on an industrial scale.  相似文献   

14.
Summary Osteoblasts of the young rat cranium, and cementoblasts and odontoblasts of young rat molars were prepared by ethanol freeze-fracture prior to critical point drying for scanning electron microscopy (SEM) as well as conventional transmission electron microscopy (TEM) techniques. Critical point drying causes shrinkage which separates the lateral intercellular contacts between neighbours in the same sheet in the case of cementoblasts and osteoblasts, but not those between odontoblasts. These differences are considered to be of functional significance and need to be taken into consideration when formulating theories of calcium influx into the mineralizable matrix of the respective tissues.  相似文献   

15.
Relevance of Polymeric Matrix Enzymes During Biofilm Formation   总被引:3,自引:0,他引:3  
Extracellular polymeric substances (EPS) contribute to biofilm stability and adhesion properties. The EPS matrix might also be a site for free extracellular enzyme activity; however, little is known about participation of enzyme activity in EPS during biofilm formation. In this study, we analyzed the activities of beta-glucosidase, leu-aminopeptidase, and beta-glucosaminidase during the colonization of artificial substrata (glass tiles) in a stream distinguishing enzyme activity in EPS matrix (matrix-enzymes) and total biofilm extracellular enzyme activity. The 1-h incubation of a biofilm suspension and cation-exchange resin followed by centrifugation seems appropriate to extract the matrix fraction (supernatant) and measure matrix enzymes (including free and linked to EPS) in freshwater biofilms, although there is a methodological limitation for using a biofilm suspension instead of an undisrupted biofilm. Total biofilm activities and matrix-enzyme activities showed similar capabilities to decompose organic matter compounds, with a greater capacity for peptide decomposition (leu-aminopeptidase) than for polysaccharides (beta-glucosidase), and a low decomposition of chitin and peptidoglycan (beta-glucosaminidase). Matrix-enzyme activity increased with colonization time, but more slowly than that of total enzyme activity. At the beginning of the colonization experiment (days 1-4) matrix enzymes accounted for 65-81% of total biofilm enzyme activity. Higher proportion of polysaccharides in EPS versus total biofilm, and higher matrix-enzyme activities per microgram of polysaccharides in the EPS were measured during the first 1-3 days of biofilm formation, indicating a high rate of enzyme release into the matrix during this period. Relative contribution of matrix-enzyme activities decreased as biofilm matures, but was maintained at 13-37% of total enzyme activity at the 42- to 49-day-old biofilm. These enzymes, retained and conserved in the EPS, may contribute to community metabolism. When analyzing extracellular enzymes in biofilms, the contribution of matrix enzymes must be considered, especially for young biofilms.  相似文献   

16.
The use of techniques such as low temperature scanning electron microscopy (LTSEM) and confocal laser scanning microscopy (CLSM) allows the study of lichen thalli in different states of hydration and also near the natural state. The spatial organization of desiccated thalli, with reduced, very compact algal layers, is different from that of hydrated ones. Sometimes, the observation with transmission electron microscopy (TEM) of photobiont pyrenoids from desiccated thalli reports pyrenoids with a central part of a weak stained matrix lacking pyrenoglobuli, named "empty zones". "Empty zones" are not distinguishable with LTSEM and do not present immunolabelling with rubisco antibody in TEM. These zones could be originated by an expansion process during rehydration produced in chemical fixation.  相似文献   

17.
Biofilms are ubiquitous surface-associated microbial communities embedded in an extracellular polymeric (EPS) matrix, which gives the biofilm structural integrity and strength. It is often reported that biofilm-grown cells exhibit enhanced tolerance toward adverse environmental stress conditions, and thus there has been a growing interest in recent years to use biofilms for biotechnological applications. We present a time- and locus-resolved, noninvasive, quantitative approach to study biofilm development and its response to the toxic solvent styrene. Pseudomonas sp. strain VLB120ΔC-BT-gfp1 was grown in modified flow-cell reactors and exposed to the solvent styrene. Biofilm-grown cells displayed stable catalytic activity, producing (S)-styrene oxide continuously during the experimental period. The pillar-like structure and growth rate of the biofilm was not influenced by the presence of the solvent. However, the cells experience severe membrane damage during styrene treatment, although they obviously are able to adapt to the solvent, as the amount of permeabilized cells decreased from 75 to 80% down to 40% in 48 h. Concomitantly, the fraction of concanavalin A (ConA)-stainable EPS increased, substantiating the assumption that those polysaccharides play a major role in structural integrity and enhanced biofilm tolerance toward toxic environments. Compared to control experiments with planktonic grown cells, the Pseudomonas biofilm adapted much better to toxic concentrations of styrene, as nearly 65% of biofilm cells were not permeabilized (viable), compared to only 7% in analogous planktonic cultures. These findings underline the robustness of biofilms under stress conditions and its potential for fine chemical syntheses.  相似文献   

18.
应用常规高真空扫描电子显微镜观察生物样品必须经过脱水和干燥处理,但无论采用临界点干燥还是冷冻干燥方法,都存在样品表面不同程度失真的问题。植物高水分、富含淀粉组织样品经处理后,容易出现淀粉流失、细胞壁变形等现象,从而造成扫描图像粗糙,无法获得真实的细胞内部结构。本文通过对CO_2临界点干燥、化学固定样品冷冻干燥和新鲜样品冷冻干燥3种扫描电镜样品制备技术中后期制样进行机械断裂和液氮脆断改进,优化出两种植物高水分、富含淀粉组织的扫描电镜样品制备方法:(1)样品首先进行FAA化学固定,经冷冻干燥后用液氮脆断,对断面喷金镀膜和扫描电镜观察。利用该方法所得细胞结构完整,细胞壁整齐,淀粉粒和蛋白轮廓明确,可用于分析淀粉粒和蛋白颗粒在细胞内的分布。(2)新鲜样品直接进行冷冻干燥,经液氮脆断后对断面喷金镀膜和扫描电镜观察。利用该方法所得细胞壁整齐,淀粉粒轮廓更清晰,并且无蛋白颗粒干扰,用于分析淀粉粒在细胞内的分布更加理想。  相似文献   

19.
Microorganisms tend to form biofilms consisting of cells embedded in a highly hydrated extracellular polymeric matrix. The biofilm protects its inhabitants from antimicrobial agents, pH alterations, and confers protection against drying. It is known that biofilm-associated bacteria can survive for a while in the absence of water. When rehydrated, metabolic processes are quickly restored and microorganisms resume life. The aim of this study is to evaluate the survival of heterotrophic bacteria, sulphate-reducing bacteria and amoeba against short-time drying. Biofilms were allowed to grow for 30 and 60 days on stainless steel (316, 2B) coupons in annular biofilm reactor, which was fed with drinking water network under constant, non-turbulent shear stress and temperature. The results presented in this study indicate a role for biofilm layer in protecting biofilm-associated microorganisms from drying. The current study has provided that short-time (24 h) absence of water could not affect biofilm-associated heterotrophic microorganisms significantly, in terms of cell viability.  相似文献   

20.
Under optimal freeze-drying conditions, solutions exhibit a cake-like porous structure. However, if the solution temperature is higher than the glass transition temperature of the maximally freeze-concentrated phase (Tg′) during drying phase, the glassy matrix undergoes viscous flow, resulting in cake collapse. The purpose of the present study was to investigate the effect of cake collapse on the integrity of freeze-dried bull spermatozoa. In a preliminary experiment, factors affecting the Tg′ of conventional EGTA buffer (consisting of Tris–HCl, EGTA and NaCl) were investigated in order to establish the main experimental protocol because EGTA buffer Tg′ was too low (−45.0 °C) to suppress collapse. Modification of the EGTA buffer composition by complete removal of NaCl and addition of trehalose (mEGTA buffer) resulted in an increase of Tg′ up to −27.7 °C. In the main experiment, blastocyst yields after ooplasmic injection of freeze-dried sperm preserved in collapsed cakes (drying temperature: 0 or −15 °C) were significantly lower than those of sperm preserved in non-collapsed cake (drying temperature: −30 °C). In conclusion, freeze-dried cake collapse may be undesirable for maintaining sperm functions to support embryonic development, and can be inhibited by controlling both Tg′ of freeze-drying buffer and temperature during the drying phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号