首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary factor for atrazine selectivity in corn (Zea mays) is the activity of a soluble enzyme, glutathione S-transferase, which detoxifies atrazine by catalyzing the formation of an atrazine-glutathione conjugate (GS-atrazine). The nonenzymatic, benzoxazinone-catalyzed hydrolysis of atrazine to hydroxyatrazine contributed to the total resistance of corn to atrazine, but the nonenzymatic detoxication pathway does not seem to be essential for resistance. All corn lines investigated, except for susceptible GT112, rapidly detoxified atrazine by glutathione conjugation. Only GT112 had low glutathione S-transferase activity. Hydroxyatrazine was found in significant quantities only when atrazine was introduced initially into the roots. The amount of hydroxyatrazine formed was nearly equal for susceptible GT112 and most of the resistant corn lines investigated. This investigation indicates that some plants protect themselves against toxic organic halide compounds with a mechanism similar to that known to exist in animals.  相似文献   

2.
We previously reported that a velvetleaf (Abutilon theophrasti Medic) biotype found in Maryland was resistant to atrazine because of an enhanced capacity to detoxify the herbicide via glutathione conjugation (JW Gronwald, Andersen RN, Yee C [1989] Pestic Biochem Physiol 34: 149-163). The biochemical basis for the enhanced atrazine conjugation capacity in this biotype was examined. Glutathione levels and glutathione S-transferase activity were determined in extracts from the atrazine-resistant biotype and an atrazine-susceptible or “wild-type” velvetleaf biotype. In both biotypes, the highest concentration of glutathione (approximately 500 nanomoles per gram fresh weight) was found in leaf tissue. However, no significant differences were found in glutathione levels in roots, stems, or leaves of either biotype. In both biotypes, the highest concentration of glutathione S-transferase activity measured with 1-chloro-2,4-dinitrobenzene or atrazine as substrate was in leaf tissue. Glutathione S-transferase measured with 1-chloro-2,4-dinitrobenzene as substrate was 40 and 25% greater in leaf and stem tissue, respectively, of the susceptible biotype compared to the resistant biotype. In contrast, glutathione S-transferase activity measured with atrazine as substrate was 4.4- and 3.6-fold greater in leaf and stem tissue, respectively, of the resistant biotype. Kinetic analyses of glutathione S-transferase activity in leaf extracts from the resistant and susceptible biotypes were performed with the substrates glutathione, 1-chloro-2,4-dinitrobenzene, and atrazine. There was little or no change in apparent Km values for glutathione, atrazine, or 1-chloro-2,4-dinitrobenzene. However, the Vmax for glutathione and atrazine were approximately 3-fold higher in the resistant biotype than in the susceptible biotype. In contrast, the Vmax for 1-chloro-2,4-dinitrobenzene was 30% lower in the resistant biotype. Leaf glutathione S-transferase isozymes that exhibit activity with atrazine and 1-chloro-2,4-dinitrobenzene were separated by fast protein liquid (anion-exchange) chromatography. The susceptible biotype had three peaks exhibiting activity with atrazine and the resistant biotype had two. The two peaks of glutathione S-transferase activity with atrazine from the resistant biotype coeluted with two of the peaks from the susceptible biotype, but peak height was three- to fourfold greater in the resistant biotype. In both biotypes, two of the peaks that exhibit glutathione S-transferase activity with atrazine also exhibited activity with 1-chloro-2,4-dinitrobenzene, with the peak height being greater in the susceptible biotype. The results indicate that atrazine resistance in the velvetleaf biotype from Maryland is due to enhanced glutathione S-transferase activity for atrazine in leaf and stem tissue which results in an enhanced capacity to detoxify the herbicide via glutathione conjugation.  相似文献   

3.
Atrazine metabolism and herbicidal selectivity   总被引:4,自引:3,他引:1       下载免费PDF全文
Metabolism of the herbicide 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) was investigated in resistant corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.), intermediately susceptible pea (Pisum sativum L.), and highly susceptible wheat (Triticum vulgare Vill.) and soybean (Glycine max Merril.). This study revealed that 2 possible pathways for atrazine metabolism exist in higher plants. All species studied were able to metabolize atrazine initially by N-dealkylation of either of the 2 substituted alkylamine groups. Corn and wheat, which contain benzoxazinone, also metabolized atrazine initially by hydrolysis in the 2-position of the s-triazine ring to form hydroxyatrazine. Subsequent metabolism by both pathways resulted in the conversion of the parent atrazine to more polar compounds and eventually into methanol-insoluble plant residue. No evidence for s-triazine ring cleavage was obtained.

Both pathways for atrazine metabolism appear to detoxify atrazine. The hydroxylation pathway results in a direct conversion of a highly phytotoxic compound to a completely non-phytotoxic derivative. The dealkylation pathway leads to detoxication through one or more partially detoxified, stable intermediates. Therefore, the rate and pathways of atrazine metabolism are important in determining the tolerance of plants to the herbicide. Both quantitative and qualitative differences in atrazine metabolism were detected between resistant, intermediately susceptible, and susceptible species. The ability of plants to metabolize atrazine by N-dealkylation and the influence of this pathway in determining tolerance of plants to atrazine are discussed.

  相似文献   

4.
Evolution of atrazine-degrading capabilities in the environment   总被引:2,自引:0,他引:2  
Since their first introduction in the mid 1950s, man-made s-triazine herbicides such as atrazine have extensively been used in agriculture to control broadleaf weed growth in different crops, and thus contributed to improving crop yield and quality. Atrazine is the most widely used s-triazine herbicide for the control of weeds in crops such as corn and sorghum. Although atrazine was initially found to be slowly and partially biodegradable, predominantly by nonspecific P450 monoxygenases which do not sustain microbial growth, microorganisms gradually evolved as a result of repeated exposure, started using it as a growth substrate and eventually succeeded in mineralizing it. Within three decades, an entirely new hydrolase-dependent pathway for atrazine mineralization emerged and rapidly spread worldwide among genetically different bacteria. This review focuses on the enzymes involved in atrazine mineralization and their evolutionary histories, the genetic composition of microbial populations involved in atrazine degradation and the biotechnologies that have been developed, based on these systems, for the bioremediation of atrazine contamination in the environment.  相似文献   

5.
The antagonistic interaction between the grass herbicide, diclofopmethyl (methyl 2-[4(2′,4′-dichlorophenoxy)phenoxy]propanoate) (DM), and 2,4-dichlorophenoxyacetic acid (2,4-D), was demonstrated in DM-resistant soybean (Glycine max [L.] Merr.) and DM-susceptible corn (Zea mays L.). 2,4-D caused root shortening and thickening, and induced callus growth in soybean and corn root tissue cultures at 1 and 10 micromolar. Normal soybean root growth was unaffected by 10 micromolar DM whereas corn root growth was inhibited completely by 1 to 10 micromolar DM. DM at 10 micromolar reversed completely the induction of callus growth by 1 micromolar 2,4-D in soybean roots. In corn, 10 micromolar 2,4-D reversed the growth inhibiting activity of 1 micromolar DM and induced callus growth. The antagonistic interaction between DM and 2,4-D was reciprocal and the activity of either compound depended upon the relative concentration of the other. 2,4-D did not antagonize or decrease the activity of DM by decreasing its uptake by root tissues or increasing the rate of its detoxication. The antagonistic interaction between DM and 2,4-D probably involves involves cellular activity associated with actively growing and proliferating cells and requires the presence of both compounds at the sensitive site.  相似文献   

6.
Hosaka H  Takagi MK 《Plant physiology》1992,99(4):1650-1656
The mechanisms of selective herbicidal action of sethoxydim were investigated by using cultured root tips of corn (Zea mays L. cv Goldencrossbantam) and pea (Pisum sativum L. cv Alaska). Meristematic cells in the cultured roots were arrested in G1 and G2 of the cell division cycle by sucrose starvation and resumed growth and cell division (proliferation) when sucrose was provided. Corn root growth after sucrose addition was inhibited by sethoxydim at concentrations of 0.01 micromolar and greater when roots were treated in the presence of sucrose but was not inhibited at 10 micromolar sethoxydim when they were treated during sucrose starvation. Greater absorption of [14C]sethoxydim into the meristematic region of corn roots was observed when cells were in proliferative condition but not when they were arrested by sucrose starvation, whereas no greater absorption of the herbicide into pea meristems was observed in either growth condition. In the cell cycle study, greater absorption of [14C]sethoxydim into the corn root meristem was observed at a certain limited time before S (DNA synthesis) stage. The physiological effects and the greater absorption of sethoxydim clearly depended on cell cycle progression of corn root meristem, whereas fatty acid synthesis, as well as its inhibition by sethoxydim, was not associated with either cell cycle progression or greater absorption of the herbicide.  相似文献   

7.
Three bacterial strains capable of degrading atrazine were isolated from Manfredi soils (Argentine) using enrichment culture techniques. These soils were used to grow corn and were treated with atrazine for weed control during 3 years. The strains were nonmotile Gram-positive bacilli which formed cleared zones on atrazine solid medium, and the 16S rDNA sequences indicated that they were Arthrobacter sp. strains. The atrazine-degrading activity of the isolates was characterized by the ability to grow with atrazine as the sole nitrogen source, the concomitant herbicide disappearance, and the chloride release. The atrazine-degrader strain Pseudomonas sp. ADP was used for comparative purposes. According to the results, all of the isolates used atrazine as sole source of nitrogen, and sucrose and sodium citrate as the carbon sources for growth. HPLC analyses confirmed herbicide clearance. PCR analysis revealed the presence of the atrazine catabolic genes trzN, atzB, and atzC. The results of this work lead to a better understanding of microbial degradation activity in order to consider the potential application of the isolated strains in bioremediation of atrazine-polluted agricultural soils in Argentina.  相似文献   

8.
The resistance mechanism of vetiver (Chrysopogon zizanioides) to atrazine was investigated to evaluate its potential for phytoremediation of environment contaminated with the herbicide. Plants known to metabolise atrazine rely on hydroxylation mediated by benzoxazinones, conjugation catalyzed by glutathione-S-transferases and dealkylation probably mediated by cytochromes P450. All three possibilities were explored in mature vetiver grown in hydroponics during this research project. Here we report on the chemical role of benzoxazinones in the transformation of atrazine. Fresh vetiver roots and leaves were cut to extract and study their content in benzoxazinones known to hydroxylate atrazine, such as 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA), 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and their mono- and di-glucosylated forms. Identification of benzoxazinones was performed by thin layer chromatography (TLC) and comparison of retention factors (Rf) and UV spectra with standards: although some products exhibited the same Rf as standards, UV spectra were different. Furthermore, in vitro hydroxylation of atrazine could not be detected in the presence of vetiver extracts. Finally, vetiver organs exposed to [14C]-atrazine did not produce any significant amount of hydroxylated products, such as hydroxyatrazine (HATR), hydroxy-deethylatrazine (HDEA), and hydroxy-deisopropylatrazine (HDIA). Altogether, these metabolic features suggest that hydroxylation was not a major metabolic pathway of atrazine in vetiver.  相似文献   

9.
Atrazine metabolism in resistant corn and sorghum   总被引:3,自引:1,他引:2       下载免费PDF全文
Shimabukuro RH 《Plant physiology》1968,43(12):1925-1930
The metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in the resistant species, corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.) was not the same. In corn, atrazine was metabolized via both the 2-hydroxylation and N-dealkylation pathways while sorghum metabolized atrazine via the N-dealkylation pathway. Atrazine metabolism in corn yielded the metabolites, 2-hydroxy-4-ethylamino-6-isopropylamino-s-triazine (hydroxyatrazine), 2-hydroxy-4-amino-6-isopropylamino-s-triazine (hydroxycompound I), and 2-hydroxy-4-amino-6-ethylamino-s-triazine (hydroxycompound II). None of these hydroxylated derivatives appeared as metabolites of atrazine in sorghum.

Hydroxycompounds I and II were formed in 2 ways in corn: (1) by benzoxazinone-catalyzed hydrolysis of 2-chloro-4-amino-6-isopropylamino-s-triazine (compound I) and 2-chloro-4-amino-6-ethylamino-s-triazine (compound II) that were formed by N-dealkylation of atrazine and (2) by N-dealkylation of hydroxyatrazine, the major atrazine metabolite in corn. The interaction of the 2-hydroxylation and N-dealkylation pathways in corn results in the formation of the 3 hydroxylated non-phytotoxic derivatives of atrazine.

  相似文献   

10.
Growth of Zea mays L. cv Potro roots was inhibited by the herbicide metsulfuron methyl (MSM) at the lowest concentration tested: 5 nanomoles per liter. Pretreatment of corn seeds with commercial 1,8-naphthalic anhydride (NA) at 1% (w/w) partially reversed MSM-induced root growth inhibition. MSM at a concentration of 52 nanomoles per liter was taken up rapidly by roots and accumulated in the corn tissue to concentrations three times those in the external medium; the safener NA increased MSM uptake up to 48 hours. The protective effect of NA was related to the ability of the safener to increase the metabolism of MSM; tenfold increases in the metabolic rates of MSM were observed in NA-pretreated corn seedlings grown for 48 hours on 52 nanomolar [14C]MSM solution. DNA synthesis determined by measurement of [3H]thymidine incorporation into DNA was inhibited by root MSM applications; after a 6-hour application period, 13 nanomolar MSM solution reduced DNA synthesis by 64%, and the same reduction was also observed with NA-pretreated seedlings. Pretreatment of corn seeds with safener NA did not increase the acetolactate synthase activity in the roots and did not change, up to 13 micromoles per liter, the in vitro sensitivity of roots to MSM.  相似文献   

11.
Six isolates of the purple non-sulfur bacteria, which upon primary isolation were naturally resistant to the herbicide atrazine, were characterized with respect to their taxonomic identity and the mechanism of their resistance. On the basis of electron microscopy, photopigment analysis, and other criteria, they were identified as strains of Rhodopseudomonas acidophila, Rhodopseudomonas palustris, or Rhodocyclus gelatinosus. These isolates exhibited degrees of atrazine resistance which ranged from 1.5 to about 4 times greater than that of cognate reference strains (American Type Culture Collection) tested. Furthermore, all of the reference strains tested were more intrinsically resistant to atrazine than was Rhodobacter sphaeroides. No unique plasmids which might encode for herbicide degradation or inactivation were found in these isolates. Resistance to the herbicide in these isolates was not the result of diminished binding of the herbicide to the L subunit of the bacterial reaction center. Differences in herbicide resistance among the various species of this group may be the result of compositional and chemical differences in the individual reaction centers. However, the increase in atrazine resistance for the isolates characterized in this study probably occurs by undefined mechanisms and not necessarily by changes in the binding of the herbicide to the L subunit of the photosynthetic reaction center.  相似文献   

12.
The inhibitory action of four herbicides (atrazine, dalapon, moiinate, propanil) on the membrane transport of sulfate by excised roots was evaluated in tolerant ( Oryza saliva ) and susceptible ( Pisam sativum, Hordeum vulgare ) cultivated species, and in a tolerant and susceptible variety of a weed ( Brassica rapa ). A parallelism between the response of the root transport activity and the general response of the genotype was ascertained, irrespective of the metabolic target of the herbicide. The inhibition mechanism of sulfate uptake was either competitive, non competitive, or uncompetitive, but this aspect was not correlated with the response of the genotype to the herbicide. The kinetics of absorption 14C atrazine by excised roots and by chloroplasts of Brassica rapa were strictly related: the amount of atrazine binding to roots and to chloroplasts was higher in the susceptible than in the resistant variety. The Sevel of atrazine inhibition of sulfate transport in roots was correlated to that of the Hill reaction; both were higher in the susceptible variety. The membrane transport within the roots appears to summarize and anticipate the metabolic response of genotypes to herbicides.  相似文献   

13.
Atrazine, a herbicide widely used in corn production, is a frequently detected groundwater contaminant. Fourteen bacterial strains able to use this herbicide as a sole source of nitrogen were isolated from soils obtained from two farms in Canada and two farms in France. These strains were indistinguishable from each other based on repetitive extragenic palindromic PCR genomic fingerprinting performed with primers ERIC1R, ERIC2, and BOXA1R. Based on 16S rRNA sequence analysis of one representative isolate, strain C147, the isolates belong to the genus Pseudaminobacter in the family Rhizobiaceae. Strain C147 did not form nodules on the legumes alfalfa (Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.), red clover (Trifolium pratense L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.). A number of chloro-substituted s-triazine herbicides were degraded, but methylthio-substituted s-triazine herbicides were not degraded. Based on metabolite identification data, the fact that oxygen was not required, and hybridization of genomic DNA to the atzABC genes, atrazine degradation occurred via a series of hydrolytic reactions initiated by dechlorination and followed by dealkylation. Most strains could mineralize [ring-U-14C]atrazine, and those that could not mineralize atrazine lacked atzB or atzBC. The atzABC genes, which were plasmid borne in every atrazine-degrading isolate examined, were unstable and were not always clustered together on the same plasmid. Loss of atzB was accompanied by loss of a copy of IS1071. Our results indicate that an atrazine-degrading Pseudaminobacter sp. with remarkably little diversity is widely distributed in agricultural soils and that genes of the atrazine degradation pathway carried by independent isolates of this organism are not clustered, can be independently lost, and may be associated with a catabolic transposon. We propose that the widespread distribution of the atrazine-degrading Pseudaminobacter sp. in agricultural soils exposed to atrazine is due to the characteristic ability of this organism to utilize alkylamines, and therefore atrazine, as sole sources of carbon when the atzABC genes are acquired.  相似文献   

14.
The s-triazine herbicide atrazine was rapidly mineralized (i.e., about 60% of 14C-ring-labelled atrazine released as 14CO2 within 21 days) by an agricultural soil from the Nile Delta (Egypt) that had been cropped with corn and periodically treated with this herbicide. Seven strains able to degrade atrazine were isolated by enrichment cultures of this soil. DNA fingerprint and phylogenetic studies based on 16S rRNA analysis showed that the seven strains were identical and belonged to the phylogeny of the genus Arthrobacter (99% similarity with Arthrobacter sp. AD38, EU710554). One strain, designated Arthrobacter sp. strain TES6, degraded atrazine and mineralized the 14C-chain-labelled atrazine. However, it was unable to mineralize the 14C-ring-labelled atrazine. Atrazine biodegradation ended in a metabolite that co-eluted with cyanuric acid in HPLC. This was consistent with its atrazine-degrading genetic potential, shown to be dependent on the trzN, atzB, and atzC gene combination. Southern blot analysis revealed that the three genes were located on a large plasmid of about 175 kb and clustered on a 22-kb SmaI fragment. These results reveal for the first time the adaptation of a North African agricultural soil to atrazine mineralization and raise interesting questions about the pandemic dispersion of the trzN, atzBC genes among atrazine-degrading bacteria worldwide.  相似文献   

15.
Exposure of the leaf canopy of corn seedlings (Zea mays L.) to atmospheric CO2 levels ranging from 100 to 800 μl/l decreased nitrate accumulation and nitrate reductase activity. Plants pretreated with CO2 in the dark and maintained in an atmosphere containing 100 μl/l CO2 accumulated 7-fold more nitrate and had 2-fold more nitrate reductase activity than plants exposed to 600 μl/l CO2, after 5 hours of illumination. Induction of nitrate reductase activity in leaves of intact corn seedlings was related to nitrate content. Changes in soluble protein were related to in vitro nitrate reductase activity suggesting that in vitro nitrate reductase activity was a measure of in situ nitrate reduction. In longer experiments, levels of nitrate reductase and accumulation of reduced N supported the concept that less nitrate was being absorbed, translocated, and assimilated when CO2 was high. Plants exposed to increasing CO2 levels for 3 to 4 hours in the light had increased concentrations of malate and decreased concentrations of nitrate in the leaf tissue. Malate and nitrate concentrations in the leaf tissue of seven of eight corn genotypes grown under comparable and normal (300 μl/l CO2) environments, were negatively correlated. Exposure of roots to increasing concentrations of potassium carbonate with or without potassium sulfate caused a progressive increase in malate concentrations in the roots. When these roots were subsequently transferred to a nitrate medium, the accumulation of nitrate was inversely related to the initial malate concentrations. These data suggest that the concentration of malate in the tissue seem to be related to the accumulation of nitrate.  相似文献   

16.
《Aquatic Botany》1987,28(1):25-37
The interaction of three environmental variables, light, salinity and cropping, with the effects of the herbicide atrazine on Halodule wrightii Ascherson was investigated in the laboratory. Atrazine at 30 ppm caused a significant reduction in survival of ramets, production of new ramets, above-ground biomass and growth, when compared to Halodule wrightii not exposed to atrazine. The three levels of each environmental condition did not alter the toxicity of atrazine to Halodule wrightii.  相似文献   

17.
R. Edwards  W. J. Owen 《Planta》1986,169(2):208-215
The metabolism of the s-triazine herbicide atrazine has been compared in Zea mays seedlings and cell suspension cultures. The rapid detoxification observed in the shoots of whole plants was not seen in the cultured cells. This difference in metabolism could be accounted for by the varying substrate specificities of the isoenzymes of glutathione S-transferase (EC 2.5.1.18) present in the plant and the cells. A single form of the enzyme isolated from leaf tissue conjugated both atrazine and the chloracetanilide herbicide metolachlor. However, the two isoenzymes present in suspension-cultured cells although active against metolachlor, showed no activity toward atrazine. Following purification, the major form of transferase present in the cells was physically similar to the enzyme isolated from leaf (Mr=55000). Both proteins were dimers of subunit Mr=26300, and with isoelectric points in the range pH 4.3-4.9. The minor form of the enzyme present in culture showed a greater specificity for metolachlor than the major species. In addition the overall activity and ratio of the two isoenzymes varied over the culture growth cycle. These findings illustrate the need for characterizing enzymes involved in herbicide detoxification in plant cell cultures.Abbreviations CDNB 1-chloro-2,4-dinitrobenzene - DEAE diethylaminoethyl - GSH glutathione (reduced) - GST glutathione S-transferase - HPLC high-pressure liquid chromatography - Mr molecular weight - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

18.
Pseudomonas sp. strain ADP uses the herbicide atrazine as the sole nitrogen source. We have devised a simple atrazine degradation assay to determine the effect of other nitrogen sources on the atrazine degradation pathway. The atrazine degradation rate was greatly decreased in cells grown on nitrogen sources that support rapid growth of Pseudomonas sp. strain ADP compared to cells cultivated on growth-limiting nitrogen sources. The presence of atrazine in addition to the nitrogen sources did not stimulate degradation. High degradation rates obtained in the presence of ammonium plus the glutamine synthetase inhibitor MSX and also with an Nas mutant derivative grown on nitrate suggest that nitrogen regulation operates by sensing intracellular levels of some key nitrogen-containing metabolite. Nitrate amendment in soil microcosms resulted in decreased atrazine mineralization by the wild-type strain but not by the Nas mutant. This suggests that, although nitrogen repression of the atrazine catabolic pathway may have a strong impact on atrazine biodegradation in nitrogen-fertilized soils, the use of selected mutant variants may contribute to overcoming this limitation.  相似文献   

19.
In the last years the chloro-s-triazine active substance terbuthylazine has been increasingly used as an herbicide and may leave residues in the environment which can be of concern. The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining its efficacy for both soil and aquatic compartments. First, the feasibility of growing the bioaugmentation bacterium inocula on simple sole nitrogen sources (ammonium and nitrate) instead of atrazine, while still maintaining its efficiency to biodegrade terbuthylazine was shown. In sequence, the successful and quick (3 days) bioremediation efficacy of ammonium-grown A. aurescens TC1 cells was proven in a natural soil freshly spiked or four-months aged with commercial terbuthylazine at a dose 10× higher than the recommended in corn cultivation, to mimic spill situations. Ecotoxicity assessment of the soil eluates towards a freshwater microalga supported the effectiveness of the bioaugmentation tool. Obtained results highlight the potential to decontaminate soil while minimizing terbuthylazine from reaching aquatic compartments via the soil-water pathway. The usefulness of this bioaugmentation tool to provide rapid environment decontamination is particularly relevant in the event of accidental high herbicide contamination. Its limitations and advantages are discussed.  相似文献   

20.
One hypothesis of triazine-type herbicide action in photosynthetic material is that the herbicide molecule competes with a secondary quinone acceptor, B, for a binding site at the reaction center of photosystem II. The binding affinity of B has been suggested to change with its level of reduction, being most strongly bound in its semiquinone form. To test this hypothesis, [14C]atrazine binding studies have been carried out under different photochemically induced levels of B reduction in Pisum sativum. It is found that herbicide binding is reduced in continuously illuminated samples compared to dark-adapted samples. Decreased binding of atrazine corresponds to an increase in the semiquinone form of B. With flash excitation, the herbicide binding oscillates with a cycle of two, being low on odd-numbered flashes when the amount of semiquinone form of B is greatest. Treatment with NH2OH was found to significantly decrease the strength of herbicide binding in the dark as well as stop the ability of p-benzoquinone to oxidize the semiquinone form of B. It is suggested that the mode of action of NH2OH is disruption of quinones or their environment on both the oxidizing and reducing sides of photosystem II. Herbicide binding was found to be unaltered under conditions when p-benzosemiquinone oxidation of the reduced primary acceptor, Q, is herbicide insensitive; weak herbicide binding cannot explain this herbicide insensitivity. It is concluded that the quinone-herbicide competition theory of herbicide action is correct. Also, since quinones are lipophilic the importance of the lipid composition of the thylakoid membrane in herbicide interactions is stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号