首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The ESAT-6 (early secreted antigenic target, 6 kDa) family collects small mycobacterial proteins secreted by Mycobacterium tuberculosis, particularly in the early phase of growth. There are 23 ESAT-6 family members in M. tuberculosis H37Rv. In a previous work, we identified the Zur- dependent regulation of five proteins of the ESAT-6/CFP-10 family (esxG, esxH, esxQ, esxR, and esxS). esxG and esxH are part of ESAT-6 cluster 3, whose expression was already known to be induced by iron starvation.  相似文献   

2.

Background:

Mycobacterium (M.) bovis is the agent of bovine tuberculosis (TB) in a range of animal species, including humans. Recent advances in immunology and the molecular biology of Mycobacterium have allowed identification of a large number of antigens with the potential for the development of a new TB vaccine. The ESAT-6 and CFP-10 proteins of M. bovis are important structural and functional proteins known to be important immunogens.

Methods:

In the current study, the DNAs encoding these genes were utilized in the construction of pcDNA 3.1+/ESAT-6 and pcDNA3.1+/CFP-10 plasmids. After intramuscular injection of BALB/c mice with these plasmids, ESAT-6 and CFP-10 mRNA expression was assessed by RT-PCR. Mice were inoculated and boosted with the plasmids to evaluate their effects on lymphocyte proliferation.

Results:

Our results indicate the plasmids are expressed at the RNA level and can induce lymphocyte proliferation.

Conclusion:

Further study is needed to characterize the effect of these antigens on the immune system and determine whether they are effective vaccine candidates against M. bovis. Key Words: Mycobacterium bovis, DNA vaccine, ESAT-6, CFP-10, PPD, Proliferation assay, BALB/c mice  相似文献   

3.
We have previously shown that the secreted M. tuberculosis complex proteins CFP-10 and ESAT-6 form a tight, 1:1 complex, which may represent their functional form. In the work reported here a combination of yeast two-hybrid and biochemical analysis has been used to characterise complex formation between two other pairs of CFP-10/ESAT-6 family proteins (Rv0287/Rv0288 and Rv3019c/Rv3020c) and to determine whether complexes can be formed between non-genome paired members of the family. The results clearly demonstrate that Rv0287/Rv0288 and Rv3019c/3020c form tight complexes, as initially observed for CFP-10/ESAT-6. The closely related Rv0287/Rv0288 and Rv3019c/Rv3020c proteins are also able to form non-genome paired complexes (Rv0287/Rv3019c and Rv0288/Rv3020c), but are not capable of binding to the more distantly related CFP-10/ESAT-6 proteins.  相似文献   

4.
In the present study, we demonstrate that, in analogy with the genes encoding ESAT-6 and CFP-10, the genes rv0287 and rv0288 from the ESAT-6 gene family are cotranscribed. Using Western-Western blotting and protein-print overlay methodologies, we demonstrate that ESAT-6 and CFP-10, as well as the protein pair Rv0288/Rv0287, interact pairwise in a highly specific way. Most notably, the ESAT-6 proteins interact directly with Rv3873, a possible cell envelope component of the ESAT-6 secretion pathway.  相似文献   

5.
Zhang L  Zhang H  Zhao Y  Mao F  Wu J  Bai B  Xu Z  Jiang Y  Shi C 《DNA and cell biology》2012,31(2):171-179
Autophagy plays specific roles in host innate and adaptive immune responses to numerous intracellular pathogens, including Mycobacterium tuberculosis. The ESAT-6 and CFP-10 proteins are secreted by M. tuberculosis and play important roles in pathogenesis. We hypothesized that these two proteins may affect the autophagy function of host macrophages during infection with M. tuberculosis, thereby shaping the immune reaction toward the pathogen. Interestingly, we found that rapamycin-induced autophagy of macrophages infected with M. tuberculosis H37Rv enhanced localization of mycobacteria with autophagosomes and lysosomes. Ectopic expression of the ESAT-6/CFP-10 fusion in macrophages dramatically inhibited autophagosome formation, and M. tuberculosis survival inside infected macrophages was significantly affected as well. Further, M. tuberculosis viability was increased by the fusion protein. Expression levels of autophagy-related genes (ATG), especially atg8, also decreased (p<0.05). These results suggested that ESAT-6 and CFP-10 proteins play significant roles in autophagy formation in M. tuberculosis infection and that autophagosome formation is regulated through the expression of ATG.  相似文献   

6.

Background

Mycobacterium tuberculosis (Mtb) infection may cause overt disease or remain latent. Interferon gamma release assays (IGRAs) detect Mtb infection, both latent infection and infection manifesting as overt disease, by measuring whole-blood interferon gamma (IFN-γ) responses to Mtb antigens such as early secreted antigenic target-6 (ESAT-6), culture filtrate protein 10 (CFP-10), and TB7.7. Due to a lack of adequate diagnostic standards for confirming latent Mtb infection, IGRA sensitivity for detecting Mtb infection has been estimated using patients with culture-confirmed tuberculosis (CCTB) for whom recovery of Mtb confirms the infection. In this study, cytokines in addition to IFN-γ were assessed for potential to provide robust measures of Mtb infection.

Methods

Cytokine responses to ESAT-6, CFP-10, TB7.7, or combinations of these Mtb antigens, for patients with CCTB were compared with responses for subjects at low risk for Mtb infection (controls). Three different multiplexed immunoassays were used to measure concentrations of 9 to 20 different cytokines. Responses were calculated by subtracting background cytokine concentrations from cytokine concentrations in plasma from blood stimulated with Mtb antigens.

Results

Two assays demonstrated that ESAT-6, CFP-10, ESAT-6+CFP-10, and ESAT-6+CFP-10+TB7.7 stimulated the release of significantly greater amounts of IFN-γ, IL-2, IL-8, MCP-1 and MIP-1β for CCTB patients than for controls. Responses to combination antigens were, or tended to be, greater than responses to individual antigens. A third assay, using whole blood stimulation with ESAT-6+CFP-10+TB7.7, revealed significantly greater IFN-γ, IL-2, IL-6, IL-8, IP-10, MCP-1, MIP-1β, and TNF-α responses among patients compared with controls. One CCTB patient with a falsely negative IFN-γ response had elevated responses with other cytokines.

Conclusions

Multiple cytokines are released when whole blood from patients with CCTB is stimulated with Mtb antigens. Measurement of multiple cytokine responses may improve diagnostic sensitivity for Mtb infection compared with assessment of IFN-γ alone.  相似文献   

7.
The Mycobacterium tuberculosis complex CFP-10/ESAT-6 family proteins play essential but poorly defined roles in tuberculosis pathogenesis. In this article we report the results of detailed spectroscopic studies of several members of the CFP-10/ESAT-6 family. This work shows that the CFP-10/ESAT-6 related proteins, Rv0287 and Rv0288, form a tight 1:1 complex, which is predominantly helical in structure and is predicted to closely resemble the complex formed by CFP-10 and ESAT-6. In addition, the Rv0287.Rv0288 complex was found to be significantly more stable to both chemical and temperature induced denaturation than CFP-10.ESAT-6. This approach demonstrated that neither Rv0287.Rv0288 nor the CFP-10.ESAT-6 complexes are destabilized at low pH (4.5), indicating that even in low pH environments, such as the mature phagosome, both Rv0287.Rv0288 and CFP-10.ESAT-6 undoubtedly function as complexes rather than individual proteins. Analysis of the structure of the CFP-10.ESAT-6 complex and optimized amino acid sequence alignments of M. tuberculosis CFP-10/ESAT-6 family proteins revealed that residues involved in the intramolecular contacts between helices are conserved across the CFP-10/ESAT-6 family, but not those involved in primarily intermolecular contacts. This analysis identified the molecular basis for the specificity and stability of complex formation between CFP-10/ESAT-6 family proteins, and indicates that the formation of functional complexes with key roles in pathogenesis will be limited to genome partners, or very closely related family members, such as Rv0287/Rv0288 and Rv3019c/Rv3020c.  相似文献   

8.
The proteins ESAT-6 and CFP-10 have been shown to be secreted by Mycobacterium tuberculosis and Mycobacterium bovis cells, to be potent T-cell antigens, and to have a clear but as yet undefined role in tuberculosis pathogenesis. We have successfully overexpressed both ESAT-6 and CFP-10 in Escherichia coli and developed efficient purification schemes. Under in vivo-like conditions, a combination of fluorescence, circular dichroism, and nuclear magnetic resonance spectroscopy have shown that ESAT-6 contains up to 75% helical secondary structure, but little if any stable tertiary structure, and exists in a molten globule-like state. In contrast, CFP-10 was found to form an unstructured, random coil polypeptide. An exciting discovery was that ESAT-6 and CFP-10 form a tight, 1:1 complex, in which both proteins adopt a fully folded structure, with about two-thirds of the backbone in a regular helical conformation. This clearly suggests that ESAT-6 and CFP-10 are active as the complex and raises the interesting question of whether other ESAT-6/CFP-10 family proteins (22 paired genes in M. tuberculosis) also form tight, 1:1 complexes, and if so, is this limited to their genome partner, or is there scope for wider interactions within the protein family, which could provide greater functional flexibility?  相似文献   

9.

Background  

The PE and PPE multigene families of Mycobacterium tuberculosis comprise about 10% of the coding potential of the genome. The function of the proteins encoded by these large gene families remains unknown, although they have been proposed to be involved in antigenic variation and disease pathogenesis. Interestingly, some members of the PE and PPE families are associated with the ESAT-6 (esx) gene cluster regions, which are regions of immunopathogenic importance, and encode a system dedicated to the secretion of members of the potent T-cell antigen ESAT-6 family. This study investigates the duplication characteristics of the PE and PPE gene families and their association with the ESAT-6 gene clusters, using a combination of phylogenetic analyses, DNA hybridization, and comparative genomics, in order to gain insight into their evolutionary history and distribution in the genus Mycobacterium.  相似文献   

10.

Background

Early secretory antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) are co-secreted proteins of Mycobacterium tuberculosis complex mycobacteria (includes M. bovis, the zoonotic agent of bovine tuberculosis) involved in phagolysosome escape of the bacillus and, potentially, in the efficient induction of granulomas. Upon tuberculosis infection, multi-nucleate giant cells are elicited, likely as a response aimed at containing mycobacteria. In tissue culture models, signal regulatory protein (SIRP)α (also referred to as macrophage fusion receptor or CD172a) is essential for multi-nucleate giant cell formation.

Methodology/Principal Findings

In the present study, ESAT-6/CFP-10 complex and SIRPα interactions were evaluated with samples obtained from calves experimentally infected with M. bovis. Peripheral blood CD172a+ (SIRPα-expressing) cells from M. bovis-infected calves proliferated upon in vitro stimulation with ESAT-6/CFP-10 (either as a fusion protein or a peptide cocktail), but not with cells from animals receiving M. bovis strains lacking ESAT-6/CFP-10 (i.e, M. bovis BCG or M. bovis ΔRD1). Sorted CD172a+ cells from these cultures had a dendritic cell/macrophage morphology, bound fluorescently-tagged rESAT-6:CFP-10, bound and phagocytosed live M. bovis BCG, and co-expressed CD11c, DEC-205, CD44, MHC II, CD80/86 (a subset also co-expressed CD11b or CD8α). Intradermal administration of rESAT-6:CFP-10 into tuberculous calves elicited a delayed type hypersensitive response consisting of CD11c+, CD172a+, and CD3+ cells, including CD172a-expressing multi-nucleated giant cells.

Conclusions/Significance

These findings demonstrate the ability of ESAT-6/CFP-10 to specifically expand CD172a+ cells, bind to CD172a+ cells, and induce multi-nucleated giant cells expressing CD172a.  相似文献   

11.
ESAT-6, an abundantly secreted protein of Mycobacterium tuberculosis (M. tuberculosis) is an important virulence factor, inactivation of which leads to reduced virulence of M. tuberculosis. ESAT-6 alone, or in complex with its chaperone CFP-10 (ESAT-6:CFP-10), is known to modulate host immune responses; however, the detailed mechanisms are not well understood. The structure of ESAT-6 or ESAT-6:CFP-10 complex does not suggest presence of enzymatic or DNA-binding activities. Therefore, we hypothesized that the crucial role played by ESAT-6 in the virulence of mycobacteria could be due to its interaction with some host cellular factors. Using a yeast two-hybrid screening, we identified that ESAT-6 interacts with the host protein beta-2-microglobulin (β2M), which was further confirmed by other assays, like GST pull down, co-immunoprecipitation and surface plasmon resonance. The C-terminal six amino acid residues (90–95) of ESAT-6 were found to be essential for this interaction. ESAT-6, in complex with CFP-10, also interacts with β2M. We found that ESAT-6/ESAT-6:CFP-10 can enter into the endoplasmic reticulum where it sequesters β2M to inhibit cell surface expression of MHC-I-β2M complexes, resulting in downregulation of class I-mediated antigen presentation. Interestingly, the ESAT-6:β2M complex could be detected in pleural biopsies of individuals suffering from pleural tuberculosis. Our data highlight a novel mechanism by which M. tuberculosis may undermine the host adaptive immune responses to establish a successful infection. Identification of such novel interactions may help us in designing small molecule inhibitors as well as effective vaccine design against tuberculosis.  相似文献   

12.
The 6-kDa early secreted antigenic target ESAT-6 and the 10-kDa culture filtrate protein CFP-10 of Mycobacterium tuberculosis are secreted by the ESX-1 system into the host cell and thereby contribute to pathogenicity. Although different studies performed at the organismal and cellular levels have helped to explain ESX-1-associated phenomena, not much is known about how ESAT-6 and CFP-10 contribute to pathogenesis at the molecular level. In this study we describe the interaction of both proteins with lipid bilayers, using biologically relevant liposomal preparations containing dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol, and cholesterol. Using flotation gradient centrifugation, we demonstrate that ESAT-6 showed strong association with liposomes, and in particular with preparations containing DMPC and cholesterol, whereas the interaction of CFP-10 with membranes appeared to be weaker and less specific. Most importantly, binding to the biomembranes no longer occurred when the proteins were present as a 1:1 ESAT-6.CFP-10 complex. However, lowering of the pH resulted in dissociation of the protein complex and subsequent protein-liposome interaction. Finally, cryoelectron microscopy revealed that ESAT-6 destabilized and lysed liposomes, whereas CFP-10 did not. In conclusion, we propose that one of the main features of ESAT-6 in the infection process of M. tuberculosis is the interaction with biomembranes that occurs after dissociation from its putative chaperone CFP-10 under acidic conditions typically encountered in the phagosome.  相似文献   

13.

Background

Despite the enormous global burden of tuberculosis (TB), conventional approaches to diagnosis continue to rely on tests that have major drawbacks. The improvement of TB diagnostics relies, not only on good biomarkers, but also upon accurate detection methodologies. The 10-kDa culture filtrate protein (CFP-10) and the 6-kDa early secreted antigen target (ESAT-6) are potent T-cell antigens that are recognised by over 70% of TB patients. Aptamers, a novel sensitive and specific class of detection molecules, has hitherto, not been raised to these relatively TB-specific antigens.

Methods

DNA aptamers that bind to the CFP-10.ESAT-6 heterodimer were isolated. To assess their affinity and specificity to the heterodimer, aptamers were screened using an enzyme-linked oligonucleotide assay (ELONA). One suitable aptamer was evaluated by ELONA using sputum samples obtained from 20 TB patients and 48 control patients (those with latent TB infection, symptomatic non TB patients, and healthy laboratory volunteers). Culture positivity for Mycobacterium tuberculosis (Mtb) served as the reference standard. Accuracy and cut-points were evaluated using ROC curve analysis.

Results

Twenty-four out of the 66 aptamers that were isolated bound significantly (p<0.05) to the CFP-10.ESAT-6 heterodimer and six were further evaluated. Their dissociation constant (KD) values were in the nanomolar range. One aptamer, designated CSIR 2.11, was evaluated using sputum samples. CSIR 2.11 had sensitivity and specificity of 100% and 68.75% using Youden’s index and 35% and 95%, respectively, using a rule-in cut-point.

Conclusion

This preliminary proof-of-concept study suggests that a diagnosis of active TB using anti-CFP-10.ESAT-6 aptamers applied to human sputum samples is feasible.  相似文献   

14.
The live tuberculosis vaccines Mycobacterium bovis BCG (bacille Calmette-Guérin) and Mycobacterium microti both lack the potent, secreted T-cell antigens ESAT-6 (6-kDa early secretory antigenic target) and CFP-10 (10-kDa culture filtrate protein). This is a result of independent deletions in the region of deletion-1 (RD1) locus, which is intact in virulent members of the Mycobacterium tuberculosis complex. To increase their immunogenicity and protective capacity, we complemented both vaccines with different constructs containing the esxA and esxB genes, which encode ESAT-6 and CFP-10 respectively, as well as a variable number of flanking genes. Only reintroduction of the complete locus, comprising at least 11 genes, led to full secretion of the antigens and resulted in specific ESAT-6-dependent immune responses; this suggests that the flanking genes encode a secretory apparatus. Mice and guinea pigs vaccinated with the recombinant strain BCG::RD1-2F9 were better protected against challenge with M. tuberculosis, showing less severe pathology and reduced dissemination of the pathogen, as compared with control animals immunized with BCG alone.  相似文献   

15.
Tuberculosis is a chronic infectious disease caused by bacteria of the Mycobacterium tuberculosis complex. One of the major contributors to virulence and intercellular spread of M. tuberculosis is the ESAT-6 secretion system 1 (ESX-1) that has been lost by the live vaccines Mycobacterium bovis BCG (Bacille Calmette Guérin) and Mycobacterium microti as a result of independent deletions. ESX-1 consists of at least 10 genes (Rv3868-Rv3877) encoding the T-cell antigens ESAT-6 and CFP-10 as well as AAA-ATPases, chaperones, and membrane proteins which probably form a novel export system. To better understand the mode of action of the ESX-1 proteins, as a prelude to drug development, we examined systematically the interactions between the various proteins using the two-hybrid system in Saccharomyces cerevisiae. Interestingly, ESAT-6 and CFP-10 formed both hetero- and homodimers. Moreover, Rv3866, Rv3868, and CFP-10 interacted with Rv3873 which also homodimerized. The data were summarized in a protein linkage map that is consistent with the model for the secretion apparatus and can be used as a basis to identify inhibitors of specific interactions.  相似文献   

16.
Proteins encoded by region of deletions (RD) of Mycobacterium tuberculosis are useful in development of vaccines and diagnostic reagents. In the present study, six M. tuberculosis genes from RD2 and RD11, rv1978, nrdf1, mpt64, cfp-21, ppe57 and ppe59, were cloned and overexpressed in Escherichia coli. All six purified recombinant proteins could distinguish tuberculosis (TB) patients and latent TB infected subjects (LTBI), or called subclinical TB infection, from BCG-vaccinated healthy controls by T-cell IFN-γ releasing ELISPOT. ELISPOT of Rv1978, NrdF1, Mpt64, CFP-21, Ppe57 and Ppe59 achieved sensitivities of 59%, 60%, 82%, 48%, 59% and 47% respectively in the detection of active TB and specificities of 94%, 90%, 76%, 93%, 100% and 93% respectively in BCG-vaccinated healthy controls. Combination of Ppe57 or NrdF1 with early secreted antigen target 6 (ESAT-6) or 10-kDa culture filtrate protein (CFP-10) in the IFN-γ releasing ESLIPOT assay could increase the sensitivities in detecting active TB, for ESAT-6 from 82.1% to 85.7% or 92.9% (P = 0.5 or 0.03, respectively) and for CFP-10 from 67.9% to 78.6% or 83.9%, respectively (both P < 0.05). The high sensitivities, specificities and promising antigenic combination of NrdF1 and Ppe57 in detection of TB in BCG-vaccinated controls suggest their potential application in TB diagnosis.  相似文献   

17.
CD8 T cells play a critical role in control of chronic viral infections; however, the role of these cells in containing persistent bacterial infections, such as those caused by Mycobacterium tuberculosis (Mtb), is less clear. We assessed the phenotype and functional capacity of CD8 T cells specific for the immunodominant Mtb antigens CFP-10 and ESAT-6, in patients with pulmonary tuberculosis (TB) disease, before and after treatment, and in healthy persons with latent Mtb infection (LTBI). In patients with TB disease, CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells had an activated, pro-apoptotic phenotype, with lower Bcl-2 and CD127 expression, and higher Ki67, CD57, and CD95 expression, than in LTBI. When CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells were detectable, expression of distinct combinations of these markers was highly sensitive and specific for differentiating TB disease from LTBI. Successful treatment of disease resulted in changes of these markers, but not in restoration of CFP-10/ESAT-6-specific CD8 or CD4 memory T cell proliferative capacity. These data suggest that high mycobacterial load in active TB disease is associated with activated, short-lived CFP-10/ESAT-6-specific CD8 T cells with impaired functional capacity that is not restored following treatment. By contrast, LTBI is associated with preservation of long-lived CFP-10/ESAT-6-specific memory CD8 T cells that maintain high Bcl-2 expression and which may readily proliferate.  相似文献   

18.
Several antigens of Mycobacterium tuberculosis have been identified and specificity to one or multiple antigens could determine the distinction between protective and pathogenic host reaction. Therefore T cell immune response to combinations 38 kDa/CFP-10, 38 kDa/MPT-64, ESAT-6/MPT-64 and ESAT-6/CFP-10 (each related to a single protein of Mycobacterium tuberculosis) in individuals from tuberculosis endemic areas have been examined. ELISA was used to detect IFN-gamma production in PBMC priming with single proteins and combinations in a panel of 105 individuals: 38 tuberculosis patients (6 untreated and 32 treated) and 67 healthy controls with tuberculin skin test positive or negative (TST). Brazilian TB patients highly recognized ESAT-6 (66%), but combinations improved response in the following order: ESAT-6/MPT-64 (89%) > ESAT-6/CFP-10 (73%) > 38 kDa/CFP-10 (70%), the last combination showing the highest specificity (TST(/) = 42% and TST(-) = 83%). Average IFN-gamma production in TB patients was signifi-cantly higher for 38 kDa/CFP-10 (P = 0.012) and 38 kDa/MPT-64 (P <0.035), when compared to single antigens. None of the combinations was able to discriminate TB patients from TST(+) controls; however, 38 kDa/CFP-10 displayed a borderline significance (P = 0.053). Similar to the ESAT-6/CFP-10 combination, IFN-gamma response to 38 kDa/CFP-10 showed an increased tendency in treated patients, although not signifi-cant (P = 0.16). We demonstrated for the first time that 38 kDa/CFP-10 had prediction sensitivity for TB patients similar to the ESAT-6/CFP-10 combination and also significant response improvement related to the single proteins with more selective reactivity among TST-positive individuals, which could be of potential interest for diagnostic evaluation for tuberculosis infection.  相似文献   

19.
The secreted Mycobacterium tuberculosis complex proteins CFP-10 and ESAT-6 have recently been shown to play an essential role in tuberculosis pathogenesis. We have determined the solution structure of the tight, 1:1 complex formed by CFP-10 and ESAT-6, and employed fluorescence microscopy to demonstrate specific binding of the complex to the surface of macrophage and monocyte cells. A striking feature of the complex is the long flexible arm formed by the C-terminus of CFP-10, which was found to be essential for binding to the surface of cells. The surface features of the CFP-10.ESAT-6 complex, together with observed binding to specific host cells, strongly suggest a key signalling role for the complex, in which binding to cell surface receptors leads to modulation of host cell behaviour to the advantage of the pathogen.  相似文献   

20.
In prokaryotes, operon encoded proteins often form protein-protein complexes. Here, we show that the native structure of operons can be used to efficiently overexpress protein complexes. This study focuses on operons from mycobacteria and the use of Mycobacterium smegmatis as an expression host. We demonstrate robust and correct stoichiometric expression of dimers to higher oligomers. The expression efficacy was found to be largely independent of the intergenic distances. The strategy was successfully extended to express mycobacterial protein complexes in Escherichia coli, showing that the operon structure of gram-positive bacteria is also functional in gram-negative bacteria. The presented strategy could become a general tool for the expression of large quantities of pure prokaryotic protein complexes for biochemical and structural studies.

Structured summary

MINT-7542207: ESAT-6 (uniprotkb:Q50206) and CFP-10 (uniprotkb:O33084) bind (MI:0407) by blue native page (MI:0276)MINT-7542534: ESAT-6 (uniprotkb:P0A564) and CFP-10 (uniprotkb:P0A566) bind (MI:0407) by X-ray crystallography (MI:0114)MINT-7542187: CFP-10 (uniprotkb:P0A566) and ESAT-6 (uniprotkb:P0A564) bind (MI:0407) by blue native page (MI:0276)MINT-7542652: CFP-10 (uniprotkb:P0A566) and ESAT-6 (uniprotkb:P0A564) bind (MI:0407) by molecular sieving (MI:0071)MINT-7542474, MINT-7542303: CFP-10 (uniprotkb:P0A566) physically interacts (MI:0915) with ESAT-6 (uniprotkb:P0A564) by pull down (MI:0096)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号