首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
Transitions in growth irradiance level from 92 to 7 Em-2 s-1 and vice versa caused changes in the pigment contents and photosynthesis of Oscillatoria agardhii. The changes in chlorophyll a and C-phycocyanin contents during the transition from high to low irradiance (HL) were reflected in photosynthetic parameters. In the LH transition light utilization efficiencies of the cells changed faster than pigment contents. This appeared to be related to the lowering of light utilization efficiencies of photosynthesis. As a possible explanation it was hypothesized that excess photosynthate production led to feed back inhibition of photosynthesis. Time-scales of changes in the maximal rate of O2 evolution were discussed as changes in the number of reaction centers of photosystem II in relation to photosynthetic electron transport. Parameters that were subject to change during irradiance transitions obeyed first order kinetics, but hysteresis occurred when comparing HL with LH transients. Interpretation of first order kinetic analysis was discussed in terms of adaptive response vs changes in growth rate.Non-standard abbreviations Chla chlorophyll a - CPC C-phycocyanin - PS II photosystem II - PS I photosystem I - RC II reaction center of photosystem II - P photosynthetic O2-evolution - I irradiance, Em-2 s-1 - light utilization efficiency of cells, mmol O2·mg dry wt-1·h-1/Em-2 s-1 - light utilization efficiency of photosynthetic apparatus, mol O2·mol Chla -1·h-1/Em-2 s-1 - Pmax maximal rate of O2 evolution by cells, mol O2·mg dry wt-1·h-1 - Pmax maximal rate of O2 evolution by photosynthetic apparatus, mol O2·mol·Chla -1·h-1 - LL low light, E m-2 s-1 - HL high light, E m-2 s-1 - LH low to high light transition - HL high to low light transition - k specific rate of adaptation, h-1 - specific growth rate, h-1 - Q pool size of cell constituent, mol·mg dry wt-1 - q net synthesis rate of cell constituent, mol·mg dry wt-1·h-1  相似文献   

2.
The effect of different light qualities (blue, green, white, red and far-red) on ethylene production in leaf discs and flower petal discs of Begonia × hiemalis cv. Schwabenland Red was studied. All the light qualities, except far-red, reduced the ACC-conversion to ethylene in leaf discs by about 70% at a photosynthetic photon flux density (PPFD) of 20 mol m–2s–1.Blue and green light were less inhibitory than white and red light at lower PPFD. In all treatments far-red light at 0.5 mol m–2s–1 of photon flux density (PFD) stimulated the ACC-conversion to ethylene in leaf discs by about 60–90% compared to the dark-incubated control. White and red light strongly inhibited the -naphthalene-acetic acid (NAA) stimulated ethylene synthesis in leaf discs. The results may suggest that the ethylene production is controlled by phytochrome in the leaves but not in the petals. Lack of coaction of any light quality with silver ions on ethylene production in leaf and petal discs was also observed.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene forming enzyme - NAA -naphthalene-acetic acid - PFD photon flux density - PPFD photosynthetic photon flux density - RH relative air humidity - SAM S-adenosylmethionine - STS silver thiosulphate  相似文献   

3.
The effects of CO2 concentration and the effects of growth-light conditions on Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) deactivation were examined for Spinacea oleracea (spinach). Rubisco deactivation kinetics and the degree that Rubisco activation limited the rise in photosynthesis following an increase in photon flux density (PFD) were determined from gas-exchange time courses. There were no significant differences in the apparent relaxation time for Rubisco deactivation among leaves exposed to high or low CO2 (50 or 1000 mol mol-1) and low PFD (170 mol m-2 s-1) or darkness. However, when PFD was increased to 1700 mol m-2 s-1 following a period of low PFD or darkness, leaves exposed to low CO2 × low PFD showed a lower contribution to the photosynthetic induction process by the activation of Rubisco than leaves exposed to the other treatments. For the growth-light experiments, spinach was grown under high PFD × high red:far-red ratio (R:FR), low PFD × high R:FR, or low PFD × low R:FR light environments. Leaves that matured under the low PFD × low R:FR treatment showed a lower percent change in photosynthesis due to Rubisco activation than leaves exposed to the other growth-light treatments. However, there were no significant differences among the growth-light treatments in the maximum contribution of Rubisco activation to the induction response or in the apparent relaxation time for Rubisco deactivation during shade events.  相似文献   

4.
The data presented here deal with the effects of high-light exposure on the 77 K fluorescence characteristics of Elatostema repens. It is shown that the decrease of the variable fluorescence during the treatment is biphasic. The reactions responsible for the first phase of fluorescence quenching are saturated under 700 mol photon m-2 s-1 and insensitive to streptomycin, whereas those responsible for the second phase are not yet saturated under 700 mol photon m-2 s-1 and sensitive to streptomycin. It is concluded that only the second phase of fluorescence quenching is associated with photoinhibitory processes. Rate and amplitude of recovery from photoinhibition are maximum under very low light (3.5 mol photon m-2 s-1), and very small at a moderate light (160 mol photon m-2 s-1) which does not cause photoinhibition. It is concluded that recovery processes are inhibited during photoinhibition. It is suggested that they could be associated with damage occuring on the oxidizing side of PSII.Abbreviations Fo, Fv, Fm initial, variable and maximum fluorescence, respectively - PFD photon flux density - PS II photosystem II  相似文献   

5.
Photosynthetic-induction response and light-fleck utilization were investigated for the current-year seedlings of Quercus serrata, a deciduous tree found in temperate regions of Japan. The tree seedlings were grown under three light regimes: a constant low photosynthetic photon flux density (PFD) regime of 50 mol m–2 s–1, a constant high PFD regime of 500 mol m–2 s–1, and a lightfleck regime with alternated low (lasting 5 s) and high (lasting 35 s) PFD. The photosynthetic-induction response following a sudden increase of PFD from 50 to 500 mol m–2 s–1 exhibited two phases: an initial fast increase complete within 3–5 s, and a second slow increase lasting for 15–20 min. Induction times required to reach 50% and 90% of steady-state assimilation rates were significantly shorter in leaves from the constant low PFD than those from the high PFD regime. During the first 60–100 s, the ratio of observed integrated CO2 uptake to that predicted by assuming that a steady-state assimilation would be achieved instantaneously after the light increase was significantly higher for leaves from the low PFD regime than from the high PFD regime. Lightfleck utilization was examined for various durations of PFD of 500 mol m–2 s–1 on a background PFD of 50 mol m–2 s–1. Lightfleck utilization efficiency was significantly higher in low PFD leaves than in the high PFD leaves for 5-s and 10-s lightflecks, but showed no difference among different light regimes for 100-s lightflecks. The contribution of post-illumination CO2 fixation to total carbon gain decreased markedly with increasing lightfleck durations, but exhibited no significant difference among growth regimes. Photosynthetic performances of induction response and lightfleck utilization in leaves from the lightfleck regime were more similar to those in leaves from the low PFD regime. It may be the total daily PFD rather than PFD dynamics in light regimes that affects the characteristics of transient photosynthesis in Q. serrata seedlings.  相似文献   

6.
Nitrate uptake in Chlorella saccharophila (Krüger) Nadson was found to be stimulated by blue light, leading to a doubling of the rate. In the presence of background red light (300 mol photons · m-2 · s-1), only 15–20 mol photons · m-2 · s-1 of blue light was sufficient to saturate this increased uptake rate. Incubation of Chlorella cells with anti-nitrate-reductase immunoglobulin-G fragments inhibited blue-light stimulation. However, ferricyanide (10 M) doubled and dithiothreitol (100 M) inhibited the stimulatory effect of blue light. Among the protein-kinase inhibitors used, only staurosporine (10 M) prevented the blue-light stimulation. Phosphatase inhibitors were without effect and sodium vanadate totally inhibited nitrate uptake, pointing to an involvement of the plasma-membrane ATPase. Preincubation of the cells with calmodulin antagonists or calcium ionophores did not significantly reduce blue-light stimulation of nitrate uptake. The data are discussed with regard to transduction of the signal for blue-light stimulation of nitrate uptake and the possibility that the plasma-membrane-bound nitrate reductase is the blue-light receptor.Abbreviations Chl chlorophyll - DMSO dimethylsulfoxide - 1,2-DHG 1,2-dihexanoylglycerol - ML-9 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine - NR nitrate reductase - H-7 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine - IgG immunoglobulin G - PFD photon flux density - PM plasma membrane - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide This work was supported by a grant from the Deutsche Forschungs-gemeinschaft to R.T.  相似文献   

7.
When Porphyridium cruentum cells were illuminated with high fluence rate between 1900 and 4800 mol photons m-2s-1, a decrease in the photosynthetic activity of the cells was observed. Within the time frame of 20 min, and under the fluence rates studied, the sum of photons to be absorbed by cells (mg of chlorophyll (Chl), sufficient to initiate photoinhibition was calculated to be 9235.8 mol. The minimal specific light absorption rate to initiate photoinhibition in P. cruentum ranges between 2.29 and 4.26 mol photons s-1 mg-1 chl.a. There was a linear relationship between the specific rate of photoinhibition and the specific light absorption rate. A photon number of 2.56×104 mol mg-1 chl.a photoinhibited photosynthesis instantaneously. At 15°C, no photoinhibitory effect was observed at 2300 mol photons m-2 s-1 even after 45 min of illumination. At the other extreme of 35°C, 84% inhibition of photosynthetic activity was observed within 10 min of exposure to 2300 mol photons m-2 s-1. Between 20 and 30°C, the photoinhibitory effect was comparable. Photoinhibited P. cruentum cells recovered readily when transferred to low light (90 mol photons m-2 s-1) and darkness, and the specific rate of recovery was independent of the light intensity to which the cells were exposed, during the photoinhibitory treatment.Abbreviations Chlorophyll QL, specific light absorption rate Publication No. 28 of the Microalgal Biotechnology Laboratory  相似文献   

8.
Leaves of Populus balsamifera grown under full natural sunlight were treated with 0, 1, or 2 l SO2·1-1 air under one of four different photon flux densities (PFD). When the SO2 exposures took place in darkness or at 300 mol photons·m-2·s-1, sulfate accumulated to the levels predicted by measurements of stomatal conductance during SO2 exposure. Under conditions of higher PFD (750 and 1550 mol·m-2·s-1), however, the predicted levels of accumulated sulfate were substantially higher than those obtained from anion chromatography of the leaf extracts. Light-and CO2-saturated capacity as well as the photon yield of photosynthetic O2 evolution were reduced with increasing concentration of SO2. At 2 l SO2·1-1 air, the greatest reductions in both photosynthetic, capacity and photon yield occurred when the leaves were exposed to SO2 in the dark, and increasingly smaller reductions in each occurred with increasing PFD during SO2 exposure. This indicates that the inhibition of photosynthesis resulting from SO2 exposure was reduced when the exposure occurred under conditions of higher light. The ratio F v/F M (variable/maximum fluorescence emission) for photosyntem II (PSII), a measure of the photochemical efficiency of PSII, remained unaffected by exposure of leaves to SO2 in the dark and exhibited only moderate reductions with increasing PFD during the exposure, indicating that PSII was not a primary site of damage by SO2. Pretreatment of leaves with SO2 in the dark, however, increased the susceptibility of PSII to photoinhibition, as such pretreated leaves exhibited much greater reductions inF V/F M when transferred to moderate or high light in air than comparable control leaves.Abbreviations and symbols A1200 photosynthetic capacity (CO2-saturated rate of O2 evolution at 1200 mol photons·m-2·s-1) - Fo instantaneous fluorescence emission - FM maximum fluorescence emission - FV variable fluorescence emission - PFD photon flux density (400–700 nm) - PSII photosystem II  相似文献   

9.
Summary A pUB110-derived plasmid/Bacillus subtilis host combination was segregationally unstable when grown in chemostat culture with complex or minimal medium and under starch, glucose or magnesium limitation. The kinetics of plasmid loss were described in terms of the difference in growth rates between plasmid-containing and plasmid-free cells (d) and the rate at which plasmid-free cells were generated from plasmid-containing cells (R). Loss of plasmid-containing cells from the population was d dominated. Changes in medium composition and the nature of growth limitation caused variations in both d and R. The plasmid was most stable in glucose-limited chemostat cultures with minimal medium and least stable under starch limitation with complex complex medium. R and d were smaller for cultures in complex media than those in minimal media. Limitation by starch induced expression of the plasmid-encoded HT amylase gene and was associated with increased values of R and d. Magnesium limitation in minimal medium caused a significant increase in d and a decrease in R.Abbreviations Cm chloramphenicol - Kan kanamycin - Cmr cells resistant to chloramphenicol (5 mg L–1) - Kanr cells resistant to kanamycin (5 mg L–1) - CmsKans cells sensitive to chloramphenicol and kanamycin  相似文献   

10.
Three isolates ofSpirulina platensis (Norst) Geitler marked BP, P4P and Z19/2 were compared with respect to their response and acclimation capability to high photon flux densities (HPFD). Cultures exposed to HPFD (1500–3500 mol photon m–2 s–1) exhibited a marked decrease in light-dependent O2 evolution rate. P4P was more sensitive to HPFD than the two other isolates. All three isolates recovered from photoinhibition when placed under low PFD. The BP isolate was able to recover also in the dark but to a lower extent and at a lower rate, while no recovery was observed in the other two isolates under dark conditions. No recovery was observed when protein synthesis was inhibited using chloramphenicol. Cultures grown at 200 mol photon m–2 s–1 differed from cultures grown at 120 mol photon m 2 s-1 by their lower maximal photosynthetic rate (P max ) and higher light saturation (I k ) value, while being more resistant to HPFD stress. The ability ofSpirulina isolates to acclimate and withstand HPFD may provide useful information for the selection of strains useful for outdoor mass cultivation.Author for correspondence  相似文献   

11.
Callus was initiated from immature leaf and stem segments of rose (Rosa hybrida cv. Landora) and subcultured every four weeks on a basal medium of half-strength Murashige & Skoog (1962) salts plus 30 g l-1 sucrose (1/2 MS) and supplemented with 2.2 M BA, 5.4 M NAA and 2.2–9.0 M 2,4-D. Embryogenic callus and subsequently somatic embryos were obtained from 8-week-old callus culture on 1/2 MS+2.2 M BA+0.05 M NAA+0.3 M GA3+200–800 mg l-1 L-proline. Long-term cultures were established and maintained for up to 16 months by repeated subculture of embryogenic callus on L-proline deficient medium. About 12% of cotyledonary stage embryos taken from cultures cold-stored at 8±1°C for 4 days germinated on 1/2 MS+2.2 M BA+0.3 M GA3+24.7 M adenine sulphate.Abbreviations BA benzyladenine - NAA -naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid  相似文献   

12.
Chlorophyll (Chl) a and Chl b contents, rate of CO2 gas exchange, quenching coefficients of chlorophyll fluorescence, and endogenous phytohormones have been studied in primary leaves of barley seedlings cultivated under blue (BL) or red (RL) light. Photon flux densities (PFD) were between 0.3 and 12 mol m-2 s-1. Plants grown at PFD of 0.3 mol m-2 s-1 demonstrated in BL tenfold and in RL threefold decreased Chl content compared to plants grown at 12 mol m-2 s-1. Chl a/b ratio increased from 2.3–2.5 to 4.4–4.5 in BL, not in RL, following the decrease in PFD at plant cultivation from 12 to 0.3 mol m-2 s-1. Plants cultivated at weak BL demonstrated severalfold decreased rate of photosynthetic CO2 uptake, whereas decrease in PFD of RL from 12 to 0.3 mol m-2 s-1 caused only 20% de cline in the rate of photosynthesis. Decrease in PFD during a plant cultivation reduced the maximum quantum yield of photosynthesis in BL, not in RL leaves. Light response curves of non-photochemical and photochemical quenching of chlorophyll fluorescence calculated on the basis of absorbed quanta were not affected by PFD of RL during plant cultivation. On the contrary, both non-photochemical quenching and accumulation of QA -, reduced primary acceptor of Photosystem II, occurred at lower amounts of absorbed quanta in leaves of BL plants grown at 0.3 than at 12 mol m-2 s-1. Two photoregulatory reactions were suggested to exert the light control of the development of photosynthetic apparatus in the range of low PFDs. The photoregulatory reaction saturating by very low PFDs of RL was supposed to be mediated by phytochrome. Phytochrome was proposed to enhance (as related to other pigment-protein complexes of thylakoids) the accu mulation of chlorophyll- b-binding light-harvesting complex of Photosystem II (LHC II). It acts independently of the pigment mediating the second photoregulatory reaction, as evidenced by the results of experiments with plant growth under mixed blue plus red light. The contents of cytokinins and indole-3-acetic acid in a leaf were not significantly affected by either light quality and PFD thus indicating those phytohormones not to be involved into photoregulatory processes.  相似文献   

13.
The light utilization efficiency and relative photon requirement of photosynthesis in pulsed and continuous light from light emitting diodes (LEDs) has been measured. First, we chacterized the photon requirement of photosynthesis from light of LEDs that differ in spectral quality. A photon requirement of 10.3±0.4 was measured using light from a 658 nm peak wavelength (22 nm half band width) LED over the range of 0–50 mol photons m–2 s–1 in 2 kPa O2 in leaves of tomato (Lycopersicon esculentum Mill., cv. VF36). Because the conversion of electrical power to photons increased with wavelength, LED lamps with peak photon output of 668 nm were most efficient for converting electricity to photosynthetically fixed carbon. The effect of pulsed irradiation on photosynthesis was then measured. When all of the light to make the equivalent of 50 mol photons m–2 s–1 was provided during 1.5 s pulses of 5000 mol photons m–2 s–1 followed by 148.5 s dark periods, photosynthesis was the same as in continuous 50 mol photons m–2 s–1. When the pulse light and dark periods were lengthened to 200 s and 19.8 ms, respectively, photosynthesis was reduced, although the averaged photon flux density was unchanged. Under these conditions, the light pulses delivered 1017 photons m–2, which we calculate to be equivalent to the capacitance of PS I or PS II. Data support the theory that photons in pulses of 100 s or shorter are absorbed and stored in the reaction centers to be used in electron transport during the dark period. When light/dark pulses were lengthened to 2 ms light and 198 ms dark, net photosynthesis was reduced to half of that measured in continuous light. Pigments of the xanthophyll cycle were not affected by any of these pulsed light treatments even though zeaxanthin formation occurred when leaves were forced to dissipate an equal amount of continuous light.Abbreviations CWF cool white fluorescent - EPS xanthophyll epoxidation state - LED light emitting diode - LUE light utilization efficiency - PFD photon flux density - PR photon requirement (for CO2 fixation) - PS II primary donor in Photosystem II - RPR relative photon requirement  相似文献   

14.
Biochemical and biophysical parameters, including D1-protein turnover, chlorophyll fluorescence, oxygen evolution activity and zeaxanthin formation were measured in the marine seagrassZostera capricorni (Aschers) in response to limiting (100 mol·m–2·–1), saturating (350 mol·m–2·s–1) or photoinhibitory (1100 mol·m–2·s–1) irradiances. Synthesis of D1 was maximal at 350 mol·m–2·s–1 which was also the irradiance at which the rate of photosynthetic O2 evolution was maximal. Degradation of D1 was saturated at 350 mol·m–2·s–1. The rate of D1 synthesis at 1100 mol·m–2·s–1 was very similar to that at 350 mol·m–2·s–1 for the first 90 min but then declined. At limiting or saturating irradiance little change was observed in the ratio of variable to maximal fluorescence (Fv/Fm) measured after dark adaptation of the leaves, while significant photoinhibition occurred at 1100 mol·m–2·s–1. The proportion of zeaxanthin in the total xanthophyll pool increased with increasing irradiance, indicative of the presence of a photoprotective xanthophyll cycle in this seagrass. These results are consistent with a high level of regulatory D1 turnover inZostera under non-photoinhibitory irradiance conditions, as has been found previously for terrestrial plants.We would like to thank Professor Peter Böger (Department of Plant Biochemistry, University of Konstanz, Germany) for the kind gift of D1 antibodies. This work was partly supported by a University of Queensland Enabling Grant to CC.  相似文献   

15.
A method for plant regeneration of Iris via somatic embryogenesis is described. Root and leaf pieces from in vitro-grown plants of several genotypes of rhizomatous Iris sp. were cultured in vitro. Callus induction occurred only on root cultures incubated under low light intensity (35 mol m-2 s-1) on two induction media containing 2,4-D (4.5 or 22.5 M), NAA (5.4 M) and kinetin (0.5 M). Somatic embryos developed after transfer of callus onto four regeneration media containing 9 or 22 M BA, or 5 M kinetin and 2 M TIBA or 9 M BA and 4 M TIBA. Plantlets could be obtained from these somatic embryos. Genotypic differences were found both in callus induction and somatic embryo formation, with I. pseudacorus responding better than I. versicolor or I. setosa. Cytological analysis performed on root tips of 80 regenerated plants revealed that two of the I. pseudacorus regenerants were tetraploid.Abbreviations 2,4-D dichlorophenoxy acetic acid - NAA naphthaleneacetic acid - BA 6-benzyladenine - TIBA 2,3,5-triiodobenzoic acid - IBA indolebutyric acid  相似文献   

16.
Thylakoids isolated from cells of the red alga Porphyridium cruentum exhibit an increased PS I activity on a chlorophyll basis with increasing growth irradiance, even though the stoichiometry of Photosystems I and II in such cells shows little change (Cunningham et al. (1989) Plant Physiol 91: 1179–1187). PS I activity was 26% greater in thylakoids of cells acclimated at 280 mol photons · m–2 · s–1 (VHL) than in cells acclimated at 10 mol photons · m–2 · s–1 (LL), indicating a change in the light absorbance capacity of PS I. Upon isolating PS I holocomplexes from VHL cells it was found that they contained 132±9 Chl/P700 while those obtained from LL cells had 165±4 Chl/P700. Examination of the polypeptide composition of PS I holocomplexes on SDS-PAGE showed a notable decrease of three polypeptides (19.5, 21.0 and 22 kDa) in VHL-complexes relative to LL-complexes. These polypeptides belong to a novel LHC I complex, recently discovered in red algae (Wolfe et al. (1994a) Nature 367: 566–568), that lacks Chl b and includes at least six different polypeptides. We suggest that the decrease in PS I Chl antenna size observed with increasing irradiance is attributable to changes occurring in the LHC I-antenna complex. Evidence for a Chl-binding antenna complex associated with PS II core complexes is lacking at this point. LHC II-type polypeptides were not observed in functionally active PS II preparations (Wolfe et al. (1994b) Biochimica Biophysica Acta 1188: 357–366), nor did we detect polypeptides that showed immunocross-reactivity with LHC II specific antisera (made to Chlamydomonas and Euglena LHC II).Abbreviations Bis-Tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - DCPIP 2,6-dichlorophenol indophenol - -dm dodecyl--d-maltoside - HL high light of 150 mol photons · m–2 · s–1 - LGB lower green band - LHC I light-harvesting complex of PS I - LHC II light-harvesting complex of PS II - LL low light of 10 mol photons · m–2 · s–1 - ML medium light of 50 mol photons · m–2 · s–1 - MES 2-(N-morpholino) ethanesulfonic acid - P700 reaction center of PS I - PFD photon flux density - Trizma tris(hydroxymethyl)aminomethane - UGB upper green band - VHL very high light of 280 mol photons · m–2 · s–1  相似文献   

17.
Plant phenotype stability during ex vitro growth, one of the main requirements of plant micropropagation, was tested on tobacco. Plants cultivated in vitro in the presence of 3 % sucrose under photon flux density (PFD) of 200 mol m–2 s–1 (3 % HL plants) showed the best growth and photosynthetic parameters in the course of 7-day acclimation. However, significant change in phenotype of these plants appeared under a decrease in PFD to 50 mol m–2 s–1 during further ex vitro growth (in the period of 7th – 17th day). Much higher internodia elongation was found in 3 % HL plants in comparison with plants grown in vitro on sucrose media under PFD of 50 mol m–2 s–1 (3 % LL) or without sucrose either under PFD of 50 mol m–2 s–1 or 200 mol m–2 s–1 (0 % LL, 0 % HL). It can be presumed that 3 % HL plants show permanent demand for high PFD. Neither ABA or chlorophyll contents nor de novo thylakoid membrane synthesis were related to the morphogenic effect of low PFD. Changeable contents of hexoses in leaves of 3 % HL and 3 % LL plants were in no direct correlation to the elongated growth.  相似文献   

18.
Laurencia brongniartii is usually found at depths below 4 m, but can be found in shallow subtidal areas in crevices and on the walls of a coral reef in Amami Oshima Island, Kagoshima Prefecture, Japan, where irradiances were significantly lower than those at similar depths in open water. In preparation for the possible cultivation of this species for its antibiotic compounds, the effects of temperature and irradiance on photosynthesis and growth were measured. Photosynthesis and growth rates of L. brongniartii explants were highest at 26 and 28 °C, which closely corresponded to temperatures found during August to late December when it was most abundant. The estimated maximum photosynthesis rate (P max) was 4.41 mol photon m–2 s–1 at 26 °C and 4.07 mol photon m–2 s–1 at 28 °C. Saturating irradiance occurred at 95 mol photon m–2 s–1 at 26 °C and 65 mol photon m–2 s–1 at 28 °C. In contrast, growth experiments at 41.7 mol photon m–2 s–1 caused bleaching of explants and the maximum growth rate observed during the study was 3.02 ± 0.75% day–1 at 28 °C and 25 mol photon m–2 s–1. The difference in the saturating irradiance for photosynthesis and the irradiance that caused bleaching in growth experiments suggests that long-term exposure to high irradiance was detrimental and should be addressed before the initiation of large scale cultivation.  相似文献   

19.
Severely yellowed ten-year-old spruce trees growing in the Vosges Mountains on an acidic soil were fertilised with Magnesium lime during the spring of 1990. The effects of this treatment were assessed 18 months later. A very significant improvement of the mineral status of the trees was detected, with increasing Mg contents in the needles, and as a consequence, reduced yellowing and improved chlorophyll content. Only slight differences with control trees were observed for height increase. Effects of this improved nutrition on photosynthesis were tested measuring net CO2 assimilation rates and chlorophyll a fluorescence. Light-saturated net assimilation rates of current-year needles were high, reaching 5.3 mol m–2 s–1 on a total needle area basis. The improvement in chlorophyll and Mg content had no significant effect on net assimilation rates or on any parameter describing photochemical functions of both current-and previous-year needles. Despite the strong inter-individual variability in needle chlorophyll and Mg contents (ranging from 0.2 to 0.8 mg g–1 fresh weight, and 0.05 to 0.5 mg g-1 dry weight respectively), photochemical efficiency of PS II under limiting irradiance only decreased significantly on older needles displaying Mg contents below 0.1 mg g–1. It is concluded from these results that spruce trees exhibit a high degree of plasticity with regard to Mg deficiency on acidic soils, and that improved Mg nutrition and increased chlorophyll content do not necessarily improve photosynthesis and height growth.Abbreviations A light-saturated net CO2 assimilation rate (mol m–2 s–1) - gw light-saturated needle conductance to water vapour (mmol m–2 s–1) - wp and wm pre-dawn and mid-day needle water potential (MPa) - osmotic potential of sap expressed from needles (MPa) - PFD photosynthetic photon flux density (mol m–2 s–1) - Fv/Fm photochemical efficiency of PS II after 20 min dark adaptation - F/Fm ' photochemical efficiency of PS II reaction centres after 10 min at a PFD of 220 mol m–2 s–1  相似文献   

20.
Ferulic acid (FA) is released by living roots and by decaying plant material and is involved in chemical interactions between plants. Effects of FA on plant growth and root development of lettuce (Lactuca sativa L. cv. Grand Rapids) cultivated in axenic nutrient solution were studied in two factorial experiments. Root and shoot growth was impeded when 200 M trans-FA was added to the nutrient solution and the light intensity was in the range of 250–380 mol m-2 s-1. Root growth showed a stronger response to FA than did shoot growth. At 200 M, FA strongly inhibited root hair formation and reduced mean lengths of primary, secondary and tertiary roots, but stimulated primary and secondary root branching. Both isomerization to the cis isomer and the presence of the plant reduced the concentration of trans-FA in the nutrient solution during the two weeks exposure period. A third experiment was conducted to assess the influence of irradiance on the phytotoxicity of FA. At a light intensity of 489 mol m-2 s-1, or in the presence of microorganisms, the concentration of FA in the nutrient solution was lowered and the phytotoxic effects were reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号