共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Detection of high-affinity intercalator sites in a ribosomal RNA fragment by the affinity cleavage intercalator methidiumpropyl-EDTA-iron(II) 总被引:7,自引:0,他引:7
The affinity cleavage reagent methidiumpropyl-EDTA (MPE) [Hertzberg, R. P., & Dervan, P. B. (1982) J. Am. Chem. Soc. 104, 313-315] intercalates between base pairs in helical DNA and, when complexed with Fe(II), cleaves the DNA by oxidative degradation of the deoxyribose. We find that this reagent is useful for mapping structure in some RNA molecules. The reagent binds to poly(A)-poly(U) with the same or slightly lower affinity as the related ethidium intercalator, selectively binds double-helical in preference to single-stranded RNA, and when complexed with Fe(II) readily cleaves the RNA backbone. The reagent binds to three or four helical locations in tRNAPhe with an affinity of 10(5)-10(6) M-1 (0.1 M Na+, pH 7.6, 37 degrees C). With a 345-base RNA fragment covering the S8/S15 protein binding region of Escherichia coli 16S ribosomal RNA, MPE-Fe(II) intercalates strongly at two helical sites: one is located at or near a single base bulge and the other at the end of a helix. Intense cutting is also seen in a region that is not part of a Watson-Crick helix. Ethidium bromide binds at these sites with high affinity (about 10(7) M-1 at 0.1 M Na+, pH 7.6, 37 degrees C). The sites are all clustered in a region of the RNA thought to bind S15. Tertiary folding of the RNA may distort helices in the molecule to create sites with particularly high affinities for intercalators; such sites may have functional significance in protein recognition or RNA-RNA interactions. 相似文献
3.
The analysis and prediction of non-canonical structural motifs in RNA is of great importance for an understanding of the function and design of RNA structures. A hierarchical method has been employed to generate a large variety of sterically possible conformations for a single-base adenine bulge structure in A -form DNA and RNA. A systematic conformational search was performed on the isolated bulge motif and neighboring nucleotides under the constraint to fit into a continuous helical structure. These substructures were recombined with double-stranded DNA or RNA. Energy minimization resulted in more than 300 distinct bulge conformations. Energetic evaluation using a solvation model based on the finite-difference Poisson-Boltzmann method identified three basic classes of low-energy structures. The three classes correspond to conformations with the bulge base stacked between flanking nucleotides (I), location of the bulge base in the minor groove (II) and conformations with a continuous stacking of the flanking helices and a looped out bulge base (III). For the looped out class, two subtypes (IIIa and IIIb) with different backbone geometries at the bulge site could be distinguished. The conformation of lowest calculated energy was a class I structure with backbone torsion angles close to those in standard A -form RNA. Conformations very close to the extra-helical looped out bulge structure determined by X-ray crystallography were also among the low-energy structures. In addition, topologies observed in other experimentally determined bulge structures have been found among low-energy conformers. The implicit solvent model was further tested by comparing an uridine and adenine bulge flanked by guanine:cytosine base-pairs, respectively. In agreement with the experimental observation, a looped out form was found as the energetically most favorable form for the uridine bulge and a stacked conformation in case of the adenine bulge. The inclusion of solvation effects especially electrostatic reaction field contributions turned out to be critically important in order to select realistic low-energy bulge structures from a large number of sterically possible conformations. The results indicate that the approach might be useful to model the three-dimensional structure of non-canonical motifs embedded in double-stranded RNA, in particular, to restrict the number of possible conformations to a manageable number of conformers with energies below a certain threshold. 相似文献
4.
Phillips T Haq I Meijer AJ Adams H Soutar I Swanson L Sykes MJ Thomas JA 《Biochemistry》2004,43(43):13657-13665
An improved synthesis of a water-soluble derivative of dipyrido[3,2-a:2',3'-c]phenazine (dppz) is reported. The structures of both dppz and the cation ethylene-bipyridyldiylium-phenazine dinitrate [[1][(PF(6))(2)]] have been obtained via X-ray crystallography. Metal complex derivatives of dppz are very well studied. However, using the water soluble [1][(NO(3))(2)], the nature of the interaction of a simple dppz unit with duplex DNA has been investigated for the first time. In both organic solvents and water, 1 displays unstructured luminescence, assigned to an intramolecular charge transfer. The emission is quenched on binding to natural and synthetic duplex DNA, including poly(dA).poly(dT). A variety of techniques reveal that the cation binds to DNA with an affinity comparable to those of many metal dppz complexes, via an intercalative binding mode. 相似文献
5.
Terbium binding to rat liver ribosomes and ribosomal RNA (rRNA) was examined by equilibrium dialysis and fluorescence spectroscopy. Upon binding to ribosomes and rRNA, the enhancement of terbium fluorescence emission at both 488 and 541 nm was dependent only upon the amount of bound terbium and independent of ionic strength. Binding profiles for ribosomes and rRNA suggested that terbium was bound to ribosomes primarily through rRNA interactions. Data suggested that terbium mimicked characteristics previously described for interactions between ribosomes and magnesium. It is proposed, therefore, that fluorescence of terbium bound to ribosomes may prove useful in studies on the nature and extent of interactions between ribosomes and magnesium. 相似文献
6.
Hampshire AJ Rusling DA Bryan S Paumier D Dawson SJ Malkinson JP Searcey M Fox KR 《Biochemistry》2008,47(30):7900-7906
We have used DNase I footprinting to study the binding strength and DNA sequence selectivity of novel derivatives of the quinoxaline bis-intercalator TANDEM. Replacing the valine residues in the cyclic octadepsipeptide with lysines does not affect the selectivity for TpA but leads to a 50-fold increase in affinity. In contrast, replacing both of the quinoxaline chromophores with naphthalene rings abolishes binding, while changing a single ring decreases the affinity, and footprints are observed at only the best binding sites (especially TATATA). By using fragments with different lengths of [(AT) n ], we demonstrate that these ligands bind best to the center of the longer (AT) n tracts. 相似文献
7.
8.
9.
Isolation of a mouse DNA fragment with homology to a Drosophila ribosomal protein gene 总被引:1,自引:0,他引:1
A mouse genomic library in lambda Charon 4A was screened for putative ribosomal protein genes using a fragment of the gene encoding Drosophila ribosomal protein 49 as a hybridization probe under nonstringent hybridization conditions. A recombinant phage was selected and its restriction enzyme map determined. The major species of mouse poly(A)+ mRNA homologous to the putative gene is about 740 nucleotides long. 相似文献
10.
About 70% of the RNA tetra-loop sequences identified in ribosomal RNAs from different organisms fall into either (UNCG) or (GNRA) families (where N = A, C, G, or U; and R = A or G). RNA hairpins with these loop sequences form unusually stable tetra-loop structures. We have studied the RNA hairpin GGAC(UUCG)GUCC and several sequence variants to determine the effect of changing the loop sequence and the loop-closing base pair on the thermodynamic stability of (UNCG) tetra-loops. The hairpin GGAG(CUUG)CUCC with the conserved loop G(CUUG)C was also unusually stable. We have determined melting temperatures (Tm), and obtained thermodynamic parameters for DNA hairpins with sequences analogous to stable RNA hairpins with (UNCG), C(GNRA)G, C(GAUA)G, and G(CUUG)C loops. DNA hairpins with (TTCG), (dUdUCG), and related sequences in the loop, unlike their RNA counterparts, did not form unusually stable hairpins. However, DNA hairpins with the consensus loop sequence C(GNRA)G were very stable compared to hairpins with C(TTTT)G or C(AAAA)G loops. The C(GATA)G and G(CTTG)C loops were also extra stable. The relative stabilities of the unusually stable DNA hairpins are similar to those observed for their RNA analogs. 相似文献
11.
Escherichia coli ribosomal protein S8 has been subjected to mild proteolytic digestion in order to search for structural domains within the protein [1]. A characteristic fragment produced in high yield after chymotrypsin treatment has been located with the protein sequence. Circular dichroism has shown this domain to be rich in α helix. However, the fragment loses its ability to bind to 16 S rRNA as does a similar fragment produced by trypsin cleavage. The intact protein is required for rRNA binding and is highly protected against proteolytic digestion when bound to the RNA. 相似文献
12.
Analyses of the T1 ribonuclease-alkaline phosphatase fingerprint of a continuous fragment of the 16S rRNA, 170-230 nucleotides long, isolated from the products of autodigestion of 30S ribosome subunits show that it contains a sequence near the 5'-phosphate terminus of intact 16S rRNA and corresponds to segment H'-M of this molecule as defined by Ehresmann et al [29]. Incubation of this fragment with total 30S ribosomal proteins under reconstitution conditions leads to the formation of a complex containing proteins S4, S20, and one or both of proteins S16 and S17. The stoichiometry of these proteins in the complex is discussed. 相似文献
13.
RNase H degradation of two 15 nt RNA target sites was examined in the presence of hairpin DNAs with a 5 nt loop and a 10 bp stem or single-stranded 15 nt DNAs. One target site was a segment of a 79 nt RNA, and the other was part of a 53 nt RNA. Secondary structure predictions indicate that the 53 nt RNA target site is entirely single stranded, while a portion of the 79 nt RNA target site forms an intramolecular duplex. Less RNase H and DNA were needed to cleave the 53 nt RNA target site than the less accessible 79 nt RNA site. The hairpin DNAs had their 5 nt loop and 3' side of the stem fully complementary to the target sites or had sequence changes that produced one to nine mismatched pairs. T(m) values ranged from 57 to 80 degrees C. The stability of the hairpin DNAs relative to the stability of their corresponding RNA-DNA hybrids influenced the extent of RNase H degradation at 37 degrees C. Under the assay conditions employed, the amount of degradation directed by the hairpin DNAs was correlated with their predicted DeltaG(o) (37) of binding to the RNA targets. A DNA hairpin with one mismatch to the target site of the 79 nt RNA did not induce degradation under conditions where fully complementary DNA hairpins produced 50-80% degradation. The in vitro results indicate that DNA hairpins can enhance the stringency of RNase H targeted degradation of the RNA sites. 相似文献
14.
Guojie Zhao Suming Tang Jun Li Tianyu Hu Yifu Guan 《Acta biochimica et biophysica Sinica》2014,(8):659-667
DNA polymerase I (Poll) digested by protease produces a small fragment (SF) containing 5~--~3~ exonuclease activity. The 5~-~3' exonuclease activity of poll cleaves the down- stream RNA primer strands during DNA replication in vivo. Previous in vitro studies suggested its capability of cleaving duplex from 5' terminal and a flap-structure-spe- cific endonuclease activity. From the crystal structures of other nucleases and biochemical data, a two-metal-ion mechanism has been proposed but has not been deter- mined. In this study, we cloned, expressed, and purified the SF protein, and established a novel fluorescence resonance energy transfer (FRET) assay to analyze the catalytic activ- ity of the SF protein. The effects of several metal ions on its catalytic capability were analyzed using this FRET assay. Results showed that Mg2+, Mn2+, and Zn2+ were able to activate the cleavage of SF, while Ca2+, Ni2+, and Co2+ were not suitable for SF catalysis. The effects of K+, Na+, and dNTP were also determined. 相似文献
15.
Jan Wuyts Yves Van de Peer Tina Winkelmans Rupert De Wachter 《Nucleic acids research》2002,30(1):183-185
The European database on SSU rRNA can be consulted via the World WideWeb at http://rrna.uia.ac.be/ssu/ and compiles all complete or nearly complete small subunit ribosomal RNA sequences. Sequences are provided in aligned format. The alignment takes into account the secondary structure information derived by comparative sequence analysis of thousands of sequences. Additional information such as literature references, taxonomy, secondary structure models and nucleotide variability maps, is also available. 相似文献
16.
17.
The effect of intercalator structure on binding strength and base-pair specificity in DNA interactions 总被引:1,自引:0,他引:1
The interaction of naphthothiophene, phenanthrene and anthracene ring systems, which have amide and ester side chains with cationic groups (synthesized from the aromatic acid chlorides and appropriate amines and alcohols), with calf thymus DNA has been investigated by using viscometric titrations, spectrophotometric binding experiments and 1H-, 31P- and 17O-NMR methods. The viscosity and NMR experiments suggest that all of these compounds bind to DNA by intercalation. These experiments and spectrophotometric binding studies, however, indicate that there is considerable variation in the interaction of these compounds with DNA. These variations can all be explained by the geometry of the ring systems, the position of protons adjacent to the side chains, and the relative sizes of the amide and ester side chains. With the naphthothiophene ester and amide, for example, the planar amide cannot rotate into the plane of the naphthothiophene ring whereas the smaller planar ester can. With this ring system the ester has a significantly higher binding constant than the amide derivative. Additional binding studies with poly[d(A-T)2] and poly[d(G-C)2] have shown that all of these compounds bind more strongly to the A-T- than the G-C-containing polymer. Since the ester compounds do not have hydrogen bond donating groups proximate to the aromatic ring, these results suggest a model for the A-T specificity of these compounds that involves a solvent-mediated hydrogen bond between the C-2 carbonyl of thymine and the carbonyl group of the intercalators. 相似文献
18.
19.
Forty-eight RNA duplexes were constructed that contained all common single base bulges at six different locations. The stabilities of the RNAs were determined by temperature gradient gel electrophoresis (TGGE). The relative stability of a single base bulge was dependent on both base identity and the nearest neighbor context. The single base bulges were placed into two categories. A bulged base with no identical neighboring base was defined as a Group I base bulge. Group II-bulged bases had at least one neighboring base identical to it. Group II bulges were generally more stable than Group I bulges in the same nearest neighbor environments. This indicates that position degeneracy of an unpaired base enhances stability. Differences in the mobility transition temperatures between the RNA fragments with bulges and the completely base-paired reference RNAs were related to free energy differences. Simple models for estimating the free energy contribution of single base bulges were evaluated from the free energy difference data. The contribution of a Group I bulge 5'-(XNZ)-3'.5'-(Z'-X')-3' where N is the unpaired base and X.X' and Z.Z' the neighboring base pairs, could be well-represented (+/-0.34 kcal/mol) by the equation, DeltaG((X)(N)()(Z))(.)((Z)(')(-)(X)(')()) = 3.11 + 0. 40DeltaG(s)()((XZ))(.)((Z)(')(X)(')()). DeltaG(s)()((XZ))(. )((Z)(')(X)(')()) is the stacking energy of the closing base pair doublet. By adding a constant term, delta = -0.3 kcal/mol, to the right side of the above equation, free energies of Group II bulges could also be predicted with the same accuracy. The term delta represents the stabilizing effect due to position degeneracy. A similar equation/model was applied to previous data from 32 DNA fragments with single base bulges. It predicted the free energy differences with a similar standard deviation. 相似文献
20.
Precursor and mature ribosomal RNA molecules from Xenopus laevis were examined by electron microscopy. A reproducible arrangement of hairpin loops was observed in these molecules. Maps based on this secondary structure were used to determine the arrangement of sequences in precursor RNA molecules and to identify the position of mature rRNAs within the precursors. A processing scheme was derived in which the 40 S rRNA is cleaved to 38 S RNA, which then yields 34 S plus 18 S RNA. The 34 S RNA is processed to 30 S, and finally to 28 S rRNA. The pathway is analogous to that of L-cell rRNA but differs from HeLa rRNA in that no 20 S rRNA intermediate was found. X. laevis 40 S rRNA (Mr = 2.7 × 106) is much smaller than HeLa or L-cell 45 8 rRNA (Mr = 4.7 × 106), but the arrangement of mature rRNA sequences in all precursors is very similar. Experiments with ascites cell 3′-exonuclease show that the 28 S region is located at or close to the 5′-end of the 40 S rRNA.Secondary structure maps were obtained also for single-stranded molecules of ribosomal DNA. The region in the DNA coding for the 40 S rRNA could be identified by its regular structure, which closely resembles that of the RNA. Regions corresponding to the 40 S RNA gene alternate with non-transcribed spacer regions along strands of rDNA. The latter have a large amount of irregular secondary structure and vary in length between different repeating units. A detailed map of the rDNA repeating unit was derived from these experiments.Optical melting studies are presented, showing that rRNAs with a high (G + C) content exhibit significant hypochromicity in the formamide/urea-containing solution that was used for spreading. 相似文献