首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study investigates the electrophysiological actions of BmK M1, an alpha-like toxin purified from the venom of the scorpion Buthus martensi Karsch, on voltage-gated Na+ channels. Using the voltage clamp technique, we assessed the BmK M1 activity on the cardiac Na+ channel (hH1) functionally expressed in Xenopus oocytes. The main actions of the toxin are a concentration-dependent slowing of the inactivation process and a hyperpolarizing shift of the steady-state inactivation. This work is the first electrophysiological characterization of BmK M1 on a cloned Na+ channel, demonstrating that this toxin belongs to the class of scorpion alpha-toxins. Our results also show that BmK M1 can be considered as a cardiotoxin.  相似文献   

2.
Scorpion alpha-neurotoxins can be classified into distinct subgroups according to their sequence and pharmacological properties. Using toxicity tests, binding studies, and electrophysiological recordings, BmK M1, a toxin from the Asian scorpion Buthus martensi Karsch, was experimentally identified as an alpha-like toxin. Being the first alpha-like toxin available in a recombinant form, BmK M1 was then modified by site-directed mutagenesis for investigation of the molecular basis of its activity. The results suggested a functional site which protrudes from the molecular scaffold as a unique tertiary arrangement, constituted by the five-residue reverse turn 8-12 and the C-terminal segment. The C-terminal basic residues Lys62 and His64 together with Lys8 in the turn, which are critical for the bioactivities, may directly interact with the receptor site on the sodium channel. Residues Asn11 and Arg58, indispensable for the activities, are mainly responsible for stabilizing the distinct conformation of the putative bioactive site. Among others, His10 and His64 seem to be involved in the preference of BmK M1 for phylogenetically distinct target sites. The comparison of BmK M1 with Aah2 (classical alpha-toxin) and Lqh(alpha)IT (alpha-insect toxin) showed that the specific orientation of the C-terminus mediated by the reverse turn might be relevant to the preference of alpha-toxin subgroups for phylogenetically distinct yet closely related receptor sites. The Y5G mutation indicated the "conserved hydrophobic surface" might be structurally important for stabilizing the beta-sheet in the alpha/beta-scaffold. The observations in this work shed light on the nature and roles of the residues possibly involved in the biological activity of a scorpion alpha-like toxin.  相似文献   

3.
The crystal structures of two group III alpha-like toxins from the scorpion Buthus martensii Karsch, BmK M1 and BmK M4, were determined at 1.7 A and 1.3 A resolution and refined to R factors of 0.169 and 0.166, respectively. The first high-resolution structures of the alpha-like scorpion toxin show some striking features compared with structures of the "classical" alpha-toxin. Firstly, a non-proline cis peptide bond between residues 9 and 10 unusually occurs in the five-member reverse turn 8-12. Secondly, the cis peptide 9-10 mediates the spatial relationship between the turn 8-12 and the C-terminal stretch 58-64 through a pair of main-chain hydrogen bonds between residues 10 and 64 to form a unique tertiary arrangement which features the special orientation of the terminal residues 62-64. Finally, in consequence of the peculiar orientation of the C-terminal residues, the functional groups of Arg58, which are crucial for the toxin-receptor interaction, are exposed and accessible in BmK M1 and M4 rather than buried as in the classical alpha-toxins. Sequence alignment and characteristics analysis suggested that the above structural features observed in BmK M1 and M4 occur in all group III alpha-like toxins. Recently, some group III alpha-like toxins were demonstrated to occupy a receptor site different from the classical alpha-toxin. Therefore, the distinct structural features of BmK M1 and M4 presented here may provide the structural basis for the newly recognized toxin-receptor binding site selectivity. Besides, the non-proline cis peptide bonds found in these two structures play a role in the formation of the structural characteristics and in keeping accurate positions of the functionally crucial residues. This manifested a way to achieve high levels of molecular specificity and atomic precision through the strained backbone geometry.  相似文献   

4.
Non-proline cis peptide bonds have been observed in numerous protein crystal structures even though the energetic barrier to this conformation is significant and no non-prolyl-cis/trans-isomerase has been identified to date. While some external factors, such as metal binding or co-factor interaction, have been identified that appear to induce cis/trans isomerization of non-proline peptide bonds, the intrinsic structural basis for their existence and the mechanism governing cis/trans isomerization in proteins remains poorly understood. Here, we report the crystal structure of a newly isolated neurotoxin, the scorpion alpha-like toxin Buthus martensii Karsch (BmK) M7, at 1.4A resolution. BmK M7 crystallizes as a dimer in which the identical non-proline peptide bond between residues 9 and 10 exists either in the cis conformation or as a mixture of cis and trans conformations in either monomer. We also determined the crystal structures of several mutants of BmK M1, a representative scorpion alpha-like toxin that contains an identical non-proline cis peptide bond as that observed in BmK M7, in which residues within or neighboring the cis peptide bond were altered. Substitution of an aspartic acid residue for lysine at residue 8 in the BmK M1 (K8D) mutant converted the cis form of the non-proline peptide bond 9-10 into the trans form, revealing an intramolecular switch for cis-to-trans isomerization. Cis/trans interconversion of the switch residue at position 8 appears to be sequence-dependent as the peptide bond between residues 9 and 10 retains its wild-type cis conformation in the BmK M1 (K8Q) mutant structure. The structural interconversion of the isomeric states of the BmK M1 non-proline cis peptide bond may relate to the conversion of the scorpion alpha-toxins subgroups.  相似文献   

5.
Scorpion alpha-like toxins are proteins that act on mammalian and insect voltage-gated Na+ channels. Therefore, these toxins constitute an excellent target for examining the foundations that underlie their target specificity. With this motive we dissected the role of six critical amino acids located in the five-residue reverse turn (RT) and C-tail (CT) of the scorpion alpha-like toxin BmK M1. These residues were individually substituted resulting in 11 mutants and were subjected to a bioassay on mice, an electrophysiological characterization on three cloned voltage-gated Na+ channels (Nav1.2, Nav1.5 and para), a CD analysis and X-ray crystallography. The results reveal two molecular sites, a couplet of residues (8-9) in the RT and a hydrophobic surface consisting of residues 57 and 59-61 in the CT, where the substitution with specific residues can redirect the alpha-like characteristics of BmK M1 to either total insect or much higher mammal specificity. Crystal structures reveal that the pharmacological ramification of these mutants is accompanied by the reshaping of the 3D structure surrounding position 8. Furthermore, our results also reveal that residues 57 and 59-61, located at the CT, enclose the critical residue 58 in order to form a hydrophobic "gasket". Mutants of BmK M1 that interrupt this hydrophobic surface significantly gain insect selectivity.  相似文献   

6.
In this study, the binding characteristics of BmK I, an alpha-like neurotoxic polypeptide purified from the venom of the Chinese scorpion Buthus martensi Karsch, were investigated on rat brain and cockroach nerve cord synaptosomes. The results showed that BmK I can bind to a single class of noninteracting binding sites on cockroach nerve cord synaptosomes with medium affinity (Kd = 16.5 +/ - 4.4 nM) and low binding capacity (Bmax = 1.05 +/- 0.23 pmol/mg protein), but lacks specific binding on rat brain synaptosomes. BmK AS, BmK AS-1 (two novel sodium channel-blocking ligands), BmK IT (an excitatory insect-selective toxin) and BmK IT2 (a depressant insect-selective toxin) from the same venom were found to be capable of depressing BmK I binding in cockroach nerve cord synaptosomes, which might be attributed to either allosteric modulation of voltage-gated Na+ channels by these toxic polypeptides or partial overlapping between the receptor binding sites of BmK I and these toxins. This thus supported the notion that alpha-like scorpion neurotoxic polypeptides bind to a distinct receptor site on sodium channels, which might be similar to the binding receptor site of alpha-type insect toxins, and also related to those of BmK AS type and insect-selective scorpion toxins on insect sodium channels.  相似文献   

7.
A primary cell culture was developed for efferent dorsal unpaired median (DUM) neurons of the locust. The isolated somata were able to generate Tetrodotoxin (TTX)-sensitive action potentials in vitro. The alpha-like scorpion toxin BmK M1, from the Asian scorpion Buthus martensi Karsch, prolonged the duration of the action potential up to 50 times. To investigate the mechanism of action of BmK M1, the TTX-sensitive voltage gated Na(+) currents were studied in detail using the whole cell patch clamp technique. BmK M1 slowed down and partially inhibited the inactivation of the TTX-sensitive Na(+) current in a dose dependent manner (EC50=326.8+/-34.5 nM). Voltage and time dependence of the Na(+) current were described in terms of the Hodgkin-Huxley model and compared in control conditions and in the presence of 500 nM BmK M1. The BmK M1 shifted steady state inactivation by 10.8 mV to less negative potentials. The steady state activation was shifted by 5.5 mV to more negative potentials, making the activation window larger. Moreover, BmK M1 increased the fast time constant of inactivation, leaving the activation time constant unchanged. In summary, BmK M1 primarily affected the inactivation parameters of the voltage gated Na(+) current in isolated locust DUM neurons.  相似文献   

8.
We have purified a new toxin (BmK 17[4]) from Asian scorpion (Buthus martensii Karsch) venom that possesses a distinctive structural motif in its N-terminal (positions 8-12) that is similarly found in two other previously described alpha-like toxins. BmK 17[4] prolongs action potentials (APs) in frog nerve and was purified using gel filtration, ion exchange, fast protein liquid chromatography (FPLC), and high-performance liquid chromatography (HPLC). BmK 17[4] significantly prolonged frog APs but it did not alter APs from an insect ventral nerve cord at similar doses. When applied to voltage-clamped frog muscle single fibers, BmK 17[4] prolonged fast inactivation. Because the polypeptide prolongs APs when both K+ and Ca2+ channels were blocked, BMK 17[4] acts to selectively alter Na+ channel inactivation. The N-terminal sequence of BmK 17[4] was found to be VRDAYIAKPENCVYXC --. The molar mass of BmK 17[4] was determined by LC/MS/MS to be 7097 Daltons. The N- terminal motif (KPENC), which introduces a reverse turn in residues 8-12, does not appear in previously characterized BmK alpha-toxins and may be characteristic of alpha-like toxins. Sequence similarity database searches were used to test whether the N-terminal sequences of alpha-like polypeptide toxins from B. martensii Karsch possess a distinctive structural motif in its 5-residue reverse turn (alpha-turn) that is conserved. Sequence similarities with putative polypeptides encoded by cDNAs obtained from a cDNA library [Zhu, S. Y., Li, W. X., Zenq, X. C., et al. (2000) Nine novel precursors of Buthus martensii scorpiox alpha-toxin homologues. Toxicon 38, 1653-1661] from BmK venom glands showed that an active polypeptide toxin cleaved from the putative propolypeptide toxin BmK M9 is likely identical to BmK 17[4]. Sequence comparisons with toxins and putative toxins from B. martensii Karsch and other species revealed that a group of these toxins possess a common structural motif in their alpha-turn. A neighbor-joining phylogenetic analysis suggests that there are two phylogenetic sister groups of related BmK polypeptides; one possesses the KPENC motif and the other possesses a modifed version (KPHNC) of it.  相似文献   

9.
An alpha-like toxin named BmK M7 active on both mammals and insects has been purified from the venom of scorpion Buthus martensii Karsch (BmK) recently. The electrophysiological experiments showed that M7 can bind to human cardiac Na+-channel and modify its normal properties, hence can be considered as a cardiotoxin. Single crystals of M7 have been obtained by hanging-drop vapor diffusion method using ammonium sulfate as precipitant in Tris-HCl buffer at pH 8.5. A data set to 1.40 A resolution was collected using synchrotron radiation and CCD detector in Photon Factory in Japan. Data analysis showed that the crystals belonged to space group P3(1)21/P3(1)21, with cell dimensions a=b=32.76 A, c=176.82 A. Assuming two molecules per asymmetric unit, the Vm value is 1.92 A3/Da. The initial structural analysis was carried out by molecular replacement, which showed the correct space group (P3(1)21), and the orientations and positions of the two molecules in the asymmetric unit.  相似文献   

10.
The gene encoding a neurotoxin (BmK M1) from the scorpion Buthus martensii Karsch was expressed in Saccharomyces cerevisiae at a high level with the alcohol dehydrogenase promoter. SDS-PAGE of the culture confirmed expression and showed secretion into medium from yeast. Recombinant BmK M1 was purified rapidly and efficiently by ion exchange and gel filtration chromatography to homogeneity, produced a single band on tricine-SDS-PAGE, and processed the homologous N-terminus. Amino acid analysis and N-terminal sequencing demonstrated that the recombinant toxin was processed correctly from the alpha-mating factor leader sequence and was chemically identical to the native form. The expressed recombinant BmK M1 was toxic for mice, which indicated that it was biologically active. Quantitative estimation showed that recombinant BmK M1 had an LD(50) similar to that of the native toxin.  相似文献   

11.
Diverse subtypes of voltage-gated sodium channels (VGSCs) have been found throughout tissues of the brain, muscles and the heart. Neurotoxins extracted from the venom of the Asian scorpion Buthus martensi Karsch (BmK) act as sodium channel-specific modulators and have therefore been widely used to study VGSCs. α-type neurotoxins, named BmK I, BmK αIV and BmK abT, bind to receptor site-3 on VGSCs and can strongly prolong the inactivation phase of VGSCs. In contrast, β-type neurotoxins, named BmK AS, BmK AS-1, BmK IT and BmK IT2, occupy receptor site-4 on VGSCs and can suppress peak currents and hyperpolarize the activation kinetics of sodium channels. Accumulating evidence from binding assays of scorpion neurotoxins on VGSCs, however, indicate that pharmacological sensitivity of VGSC subtypes to different modulators is much more complex than that suggested by the simple α-type and β-type neurotoxin distinction. Exploring the mechanisms of possible dynamic interactions between site 3-/4-specific modulators and region- and/or species-specific subtypes of VGSCs would therefore greatly expand our understanding of the physiological and pharmacological properties of diverse VGSCs. In this review, we discuss the pharmacological and structural diversity of VGSCs as revealed by studies exploring the binding properties and cross-competitive binding of site 3- or site 4-specific modulators in VGSC subtypes in synaptosomes from distinct tissues of diverse species.  相似文献   

12.
The gene encoding a neurotoxin (BmK M1) from the scorpion Buthus martensii Karsch was expressed in Saccharomyces cerevisiae at a high level with the alcohol dehydrogenase promoter. SDS–PAGE of the culture confirmed expression and showed secretion into medium from yeast. Recombinant BmK M1 was purified rapidly and efficiently by ion exchange and gel filtration chromatography to homogeneity, produced a single band on tricine–SDS–PAGE, and processed the homologous N-terminus. Amino acid analysis and N-terminal sequencing demonstrated that the recombinant toxin was processed correctly from the α-mating factor leader sequence and was chemically identical to the native form. The expressed recombinant BmK M1 was toxic for mice, which indicated that it was biologically active. Quantitative estimation showed that recombinant BmK M1 had an LD50 similar to that of the native toxin.  相似文献   

13.
We have isolated a cardiotoxin, denoted jingzhaotoxin-III (JZTX-III), from the venom of the Chinese spider Chilobrachys jingzhao. The toxin contains 36 residues stabilized by three intracellular disulfide bridges (I-IV, II-V, and III-VI), assigned by a chemical strategy of partial reduction and sequence analysis. Cloned and sequenced using 3'-rapid amplification of cDNA ends and 5'-rapid amplification of cDNA ends, the full-length cDNA encoded a 63-residue precursor of JZTX-III. Different from other spider peptides, it contains an uncommon endoproteolytic site (-X-Ser-) anterior to mature protein and the intervening regions of 5 residues, which is the smallest in spider toxin cDNAs identified to date. Under whole cell recording, JZTX-III showed no effects on voltage-gated sodium channels (VGSCs) or calcium channels in dorsal root ganglion neurons, whereas it significantly inhibited tetrodotoxin-resistant VGSCs with an IC(50) value of 0.38 microm in rat cardiac myocytes. Different from scorpion beta-toxins, it caused a 10-mV depolarizing shift in the channel activation threshold. The binding site for JZTX-III on VGSCs is further suggested to be site 4 with a simple competitive assay, which at 10 microm eliminated the slowing currents induced by Buthus martensi Karsch I (BMK-I, scorpion alpha-like toxin) completely. JZTX-III shows higher selectivity for VGSC isoforms than other spider toxins affecting VGSCs, and the toxin hopefully represents an important ligand for discriminating cardiac VGSC subtype.  相似文献   

14.
In the present study, BmK alphaIV, a novel modulator of sodium channels, was cloned from venomous glands of the Chinese scorpion (Buthus martensi Karsch) and expressed successfully in Escherichia coli. The BmK alphaIV gene is composed of two exons separated by a 503 bp intron. The mature polypeptide contains 66 amino acids. BmK alphaIV has potent toxicity in mice and cockroaches. Surface-plasmon-resonance analysis found that BmK alphaIV could bind to both rat cerebrocortical synaptosomes and cockroach neuronal membranes, and shared similar binding sites on sodium channels with classical AaH II (alpha-mammal neurotoxin from the scorpion Androctonus australis Hector), BmK AS (beta-like neurotoxin), BmK IT2 (the depressant insect-selective neurotoxin) and BmK abT (transitional neurotoxin), but not with BmK I (alpha-like neurotoxin). Two-electrode voltage clamp recordings on rNav1.2 channels expressed in Xenopus laevis oocytes revealed that BmK alphaIV increased the peak amplitude and prolonged the inactivation phase of Na+ currents. The structural and pharmacological properties compared with those of other scorpion alpha-toxins suggests that BmK alphaIV represents a novel subgroup or functional hybrid of alpha-toxins and might be an evolutionary intermediate neurotoxin for alpha-toxins.  相似文献   

15.
BmK M4 is a neutral neurotoxin in the BmK toxin series. It is medially toxic and belongs to group III cc-toxins. The purified sample was crystallized in rhombic space group P6 Using an X-ray diffraction technique, the crystal structure of BmK M4 was revealed by molecular replacement at 0.20 nm resolution. The model was refined. The final crystallographic R factor was 0.142 and the free R factor was 0.173. The root mean square deviation is 0.001 5 nm for the bond length and 1.753° for the bond angles. 64 water molecules were added to the asymmetric unit. The refined structure showed an unusual non-prolyl cis peptide bond at residue 10. The structure was compared with group II a-toxin BmK M8 (an acidic, weak toxin). The potential structural implications of the cis peptide bond were discussed.  相似文献   

16.
BmK M4 is a neutral neurotoxin in the BmK toxin series.It is medially toxic and belongs to group III α-toxins.The purified sample was crystallized in rhombic space group P61.Using an X-ray diffraction technique,the crystal structure of BmK M4 was revealed by molecular replacement at 0.20 nm resolution.The model was refined.The final crystallographic R factor was 0.142 and the free R factor was 0.173.The root mean square deviation is 0.001 5 nm for the bond length and 1.753°for the bond angles.64 water molecules were added to the asymmetric unit.The refined structure showed an unusual non-prolyl cis peptide bond at residue 10.The structure was compared with group II α-toxin BmK M8 (an acidic,weak toxin).The potential structural implications of the cis peptide bond were discussed.  相似文献   

17.
In this study, the role of two conversed tyrosines (Tyr5 and Tyr42) from the scorpion toxin BmK AGP-SYPU1 was investigated with an effective Escherichia coli expression system. Site-directed mutagenesis was used to individually substitute Tyr5 and Tyr42 with hydrophobic or hydrophilic amino acids, and the extent to which these scorpion toxin BmK AGP-SYPU1 tyrosines contribute to analgesic activity was evaluated. The results of the mouse-twisting test showed that Tyr5 and Tyr42 are associated with the analgesic activity of the toxin because the analgesic activities of Y5F and Y42F were significantly increased compared with the rBmK AGP-SYPU1; however, the Y5W had decreased activity. The results of molecular simulation reveal the following: (1) for analgesic activity, the core domain of the scorpion toxin BmK AGP-SYPU1 is key and (2) for pharmacological function, Tyr42 is most likely involved when the core domain conformation is altered. These studies identify a new relationship between the structure and analgesic activity of the scorpion toxin BmK AGP-SYPU1 and are significant for further research and the application of analgesic peptides.  相似文献   

18.
经Sephadex G-50,sp-Sephadex C-25二步柱层析法,从山东马氏钳蝎(Bu-thus martensii Karch)粗毒中分离出四种对美洲(虫非)蠊有强直麻痹反应的毒性蛋白组份。其中二个组分在SDS聚丙烯酰胺电泳和等电聚焦电泳上均呈现单一区带,命名为BmK IT-Ⅰ,BmK IT-Ⅱ其pI分别为8.2和8.4,分子量分别为8400和7560。同时还分析了二个组份的氨基酸组成。经DABITC/PITC双偶合法测定了BmKIT-Ⅰ和BmK IT-Ⅱ的N端部份氨基酸排列顺序,它们分别为H_2NVal.Arg.Asp.Ala……H_2NVal.Arg.Asp.Gly……。 电生理学研究表明,纯化的BmK IT-I(1×10~(-5)g/ml)对(虫非)蠊腹Ⅵ神经节的突触传递有阻断作用,阻断后用生理溶液洗,则突触传递可恢复。从同一蝎毒粗毒中分离纯化的哺乳动物类神经毒素BmKⅢ在浓度高出100倍(1×10~(-3)g/ml)时也可以阻断(虫非)蠊腹Ⅵ神经节的突触传递,但用生理溶液冲洗没有观察到恢复。  相似文献   

19.
BmK AngM1, a scorpion peptide isolated from Buthus martensii Karch was reported to exhibit potential analgesic effect. But the relative low content of this toxin in crude venom limits its further characterization. In this study, we constructed an expression vector and transformed into E.coli. The BmK AngM1 was expressed as a fusion protein in the soluble fraction and was purified by Nickel affinity chromatography. Subsequently, the purified fusion protein was cleaved by enterokinase and was further purified by reverse-phase HPLC. We purified 25 mg recombinant BmK AngM1 (rBmK AngM1) from 1 L bacterial culture. The molecular weight of rBmK AngM1 determined by ESI-MS was 7240.4 Da which was the expected size for correctly processed. Analgesic bioassay studies of rBmK AngM1 exhibited its potential analgesic effect comparable to that of the natural BmK AngM1 peptide.  相似文献   

20.
The crystal structure of an acidic neurotoxin, BmK M8, from Chinese scorpion Buthus martensii Karsch was determined at 0.25 nm resolution. The X-ray diffraction data of BmK M8 crystals at 0.25nm resolution were collected on a Siemens area detector. Using molecular replacement method with a basic scorpion toxin AaH II in a search model, the cross-rotation function, PC-refinement and translation function were calculated by X-PLOR program package. The correct orientation and position of BmK M8 molecule in crystal were determined in a resolution range of 1.5 - 0.35nm, The oystallographic refinement was further performed by stereo-chemical restrict least-square technique, followed by simulated annealing, slow-cooling protocols. The final crystallographic R-factor at 0.8-0.25 nm is 0.171. The standard deviations of bond length and bond angle from ideality are 0.001 7nm and 2.24° , respectively. The final model of BmK M8 structure is composed of a dense core of secondary structure elements by a stretch of α-  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号