首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic manipulation of glycine decarboxylation   总被引:15,自引:0,他引:15  
The glycine-serine interconversion, catalysed by glycine decarboxylase and serine hydroxymethyltransferase, is an important reaction of primary metabolism in all organisms including plants, by providing one-carbon units for many biosynthetic reactions. In plants, in addition, it is an integral part of the photorespiratory metabolic pathway and produces large amounts of photorespiratory CO(2) within mitochondria. Although controversial, there is significant evidence that this process, by the relocation of glycine decarboxylase within the leaves from the mesophyll to the bundle-sheath, contributed to the evolution of C(4) photosynthesis. In this review, some aspects of current knowledge about glycine decarboxylase and serine hydroxymethyltransferase and the role of these enzymes in metabolism, about the corresponding genes and their expression as well as about mutants and anti-sense plants related to these genes or processes will be summarized and discussed. From a comparison of the available information about the number and organization of GDC and SHMT genes in the genomes of Arabidopsis thaliana and Oryza sativa it appears that these and, possibly, other genes related to photorespiration, are similarly organized even in only very distantly related angiosperms.  相似文献   

2.
In order to investigate the metabolic importance of glycine decarboxylase (GDC) in cyanobacteria, mutants were generated defective in the genes encoding GDC subunits and the serine hydroxymethyl-transferase (SHMT). It was possible to mutate the genes for GDC subunits P, T, or H protein in the cyanobacterial model strain Synechocystis sp. PCC 6803, indicating that GDC is not necessary for cell viability under standard conditions. In contrast, the SHMT coding gene was found to be essential. Almost no changes in growth, pigmentation, or photosynthesis were detected in the GDC subunit mutants, regardless of whether or not they were cultivated at ambient or high CO2 concentrations. The mutation of GDC led to an increased glycine/serine ratio in the mutant cells. Furthermore, supplementation of the medium with low glycine concentrations was toxic for the mutants but not for wild type cells. Conditions stimulating photorespiration in plants, such as low CO2 concentrations, did not induce but decrease the expression of the GDC and SHMT genes in Synechocystis. It appears that, in contrast to heterotrophic bacteria and plants, GDC is dispensable for Synechocystis and possibly other cyanobacteria.  相似文献   

3.
The photorespiratory Arabidopsis (Arabidopsis thaliana) mutant gld1 (now designated mtkas-1) is deficient in glycine decarboxylase (GDC) activity, but the exact nature of the genetic defect was not known. We have identified the mtkas-1 locus as gene At2g04540, which encodes beta-ketoacyl-[acyl carrier protein (ACP)] synthase (mtKAS), a key enzyme of the mitochondrial fatty acid synthetic system. One of its major products, octanoyl-ACP, is regarded as essential for the intramitochondrial lipoylation of several proteins including the H-protein subunit of GDC and the dihydrolipoamide acyltransferase (E2) subunits of two other essential multienzyme complexes, pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase. This view is in conflict with the fact that the mtkas-1 mutant and two allelic T-DNA knockout mutants grow well under nonphotorespiratory conditions. Although on a very low level, the mutants show residual lipoylation of H protein, indicating that the mutation does not lead to a full functional knockout of GDC. Lipoylation of the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase E2 subunits is distinctly less reduced than that of H protein in leaves and remains unaffected from the mtKAS knockout in roots. These data suggest that mitochondrial protein lipoylation does not exclusively depend on the mtKAS pathway of lipoate biosynthesis in leaves and may occur independently of this pathway in roots.  相似文献   

4.
5.

Background

Photorespiratory carbon metabolism was long considered as an essentially closed and nonregulated pathway with little interaction to other metabolic routes except nitrogen metabolism and respiration. Most mutants of this pathway cannot survive in ambient air and require CO2-enriched air for normal growth. Several studies indicate that this CO2 requirement is very different for individual mutants, suggesting a higher plasticity and more interaction of photorespiratory metabolism as generally thought. To understand this better, we examined a variety of high- and low-level parameters at 1% CO2 and their alteration during acclimation of wild-type plants and selected photorespiratory mutants to ambient air.

Methodology and Principal Findings

The wild type and four photorespiratory mutants of Arabidopsis thaliana (Arabidopsis) were grown to a defined stadium at 1% CO2 and then transferred to normal air (0.038% CO2). All other conditions remained unchanged. This approach allowed unbiased side-by-side monitoring of acclimation processes on several levels. For all lines, diel (24 h) leaf growth, photosynthetic gas exchange, and PSII fluorescence were monitored. Metabolite profiling was performed for the wild type and two mutants. During acclimation, considerable variation between the individual genotypes was detected in many of the examined parameters, which correlated with the position of the impaired reaction in the photorespiratory pathway.

Conclusions

Photorespiratory carbon metabolism does not operate as a fully closed pathway. Acclimation from high to low CO2 was typically steady and consistent for a number of features over several days, but we also found unexpected short-term events, such as an intermittent very massive rise of glycine levels after transition of one particular mutant to ambient air. We conclude that photorespiration is possibly exposed to redox regulation beyond known substrate-level effects. Additionally, our data support the view that 2-phosphoglycolate could be a key regulator of photosynthetic-photorespiratory metabolism as a whole.  相似文献   

6.
The occurrence of a photorespiratory 2-phosphoglycolate metabolism in cyanobacteria is not clear. In the genome of the cyanobacterium Synechocystis sp. strain PCC 6803, we have identified open reading frames encoding enzymes homologous to those forming the plant-like C2 cycle and the bacterial-type glycerate pathway. To study the route and importance of 2-phosphoglycolate metabolism, the identified genes were systematically inactivated by mutagenesis. With a few exceptions, most of these genes could be inactivated without leading to a high-CO(2)-requiring phenotype. Biochemical characterization of recombinant proteins verified that Synechocystis harbors an active serine hydroxymethyltransferase, and, contrary to higher plants, expresses a glycolate dehydrogenase instead of an oxidase to convert glycolate to glyoxylate. The mutation of this enzymatic step, located prior to the branching of phosphoglycolate metabolism into the plant-like C2 cycle and the bacterial-like glycerate pathway, resulted in glycolate accumulation and a growth depression already at high CO(2). Similar growth inhibitions were found for a single mutant in the plant-type C2 cycle and more pronounced for a double mutant affected in both the C2 cycle and the glycerate pathway after cultivation at low CO(2). These results suggested that cyanobacteria metabolize phosphoglycolate by the cooperative action of the C2 cycle and the glycerate pathway. When exposed to low CO(2), glycine decarboxylase knockout mutants accumulated far more glycine and lysine than wild-type cells or mutants with inactivated glycerate pathway. This finding and the growth data imply a dominant, although not exclusive, role of the C2 route in cyanobacterial phosphoglycolate metabolism.  相似文献   

7.
V Prabhu  K B Chatson  G D Abrams    J King 《Plant physiology》1996,112(1):207-216
In C3 plants, serine synthesis is associated with photorespiratory glycine metabolism involving the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC) and serine hydroxymethyl transferase (SHMT). Alternatively, THF-dependent serine synthesis can occur via the C1-THF synthase/SHMT pathway. We used 13C nuclear magnetic resonance to examine serine biosynthesis by these two pathways in Arabidopsis thaliana (L.) Heynh. Columbia wild type. We confirmed the tight coupling of the GDC/ SHMT system and observed directly in a higher plant the flux of formate through the C1-THF synthase/SHMT system. The accumulation of 13C-enriched serine over 24 h from the GDC/SHMT activities was 4-fold greater than that from C1-THF synthase/SHMT activities. Our experiments strongly suggest that the two pathways operate independently in Arabidopsis. Plants exposed to methotrexate and sulfanilamide, powerful inhibitors of THF biosynthesis, reduced serine synthesis by both pathways. The results suggest that continuous supply of THF is essential to maintain high rates of serine metabolism. Nuclear magnetic resonance is a powerful tool for the examination of THF-mediated metabolism in its natural cellular environment.  相似文献   

8.
Recycling of carbon by the photorespiratory pathway involves enzymatic steps in the chloroplast, mitochondria, and peroxisomes. Most of these reactions are essential for plants growing under ambient CO(2) concentrations. However, some disruptions of photorespiratory metabolism cause subtle phenotypes in plants grown in air. For example, Arabidopsis thaliana lacking both of the peroxisomal malate dehydrogenase genes (pmdh1pmdh2) or hydroxypyruvate reductase (hpr1) are viable in air and have rates of photosynthesis only slightly lower than wild-type plants. To investigate how disruption of the peroxisomal reduction of hydroxypyruvate to glycerate influences photorespiratory carbon metabolism we analyzed leaf gas exchange in A. thaliana plants lacking peroxisomal HPR1 expression. In addition, because the lack of HPR1 could be compensated for by other reactions within the peroxisomes using reductant supplied by PMDH a triple mutant lacking expression of both peroxisomal PMDH genes and HPR1 (pmdh1pmdh2hpr1) was analyzed. Rates of photosynthesis under photorespiratory conditions (ambient CO(2) and O(2) concentrations) were slightly reduced in the hpr1 and pmdh1pmdh2hpr1 plants indicating other reactions can help bypass this disruption in the photorespiratory pathway. However, the CO(2) compensation points (Γ) increased under photorespiratory conditions in both mutants indicating changes in photorespiratory carbon metabolism in these plants. Measurements of Γ*, the CO(2) compensation point in the absence of mitochondrial respiration, and the CO(2) released per Rubisco oxygenation reaction demonstrated that the increase in Γ in the hpr1 and pmdh1pmdh2hpr1 plants is not associated with changes in mitochondrial respiration but with an increase in the non-respiratory CO(2) released per Rubisco oxygenation reaction.  相似文献   

9.
Serine hydroxymethyltransferases (SHMs) are important enzymes of cellular one-carbon metabolism and are essential for the photorespiratory glycine-into-serine conversion in leaf mesophyll mitochondria. In Arabidopsis (Arabidopsis thaliana), SHM1 has been identified as the photorespiratory isozyme, but little is known about the very similar SHM2. Although the mitochondrial location of SHM2 can be predicted, some data suggest that this particular isozyme could be inactive or not targeted into mitochondria. We report that SHM2 is a functional mitochondrial SHM. In leaves, the presequence of SHM2 selectively hinders targeting of the enzyme into mesophyll mitochondria. For this reason, the enzyme is confined to the vascular tissue of wild-type Arabidopsis, likely the protoxylem and/or adjacent cells, where it occurs together with SHM1. The resulting exclusion of SHM2 from the photorespiratory environment of mesophyll mitochondria explains why this enzyme cannot substitute for SHM1 in photorespiratory metabolism. Unlike the individual shm1 and shm2 null mutants, which require CO(2)-enriched air to inhibit photorespiration (shm1) or do not show any visible impairment (shm2), double-null mutants cannot survive in CO(2)-enriched air. It seems that SHM1 and SHM2 operate in a redundant manner in one-carbon metabolism of nonphotorespiring cells with a high demand of one-carbon units; for example, during lignification of vascular cells. We hypothesize that yet unknown kinetic properties of SHM2 might render this enzyme unsuitable for the high-folate conditions of photorespiring mesophyll mitochondria.  相似文献   

10.
Schwarte S  Bauwe H 《Plant physiology》2007,144(3):1580-1586
The chloroplastidal enzyme 2-phosphoglycolate phosphatase (PGLP), PGLP1, catalyzes the first reaction of the photorespiratory C(2) cycle, a major pathway of plant primary metabolism. Thirteen potential PGLP genes are annotated in the Arabidopsis (Arabidopsis thaliana) genome; however, none of these genes has been functionally characterized, and the gene encoding the photorespiratory PGLP is not known. Here, we report on the identification of the PGLP1 gene in a higher plant and provide functional evidence for a second, nonphotorespiratory PGLP, PGLP2. Two candidate genes, At5g36700 (AtPGLP1) and At5g47760 (AtPGLP2), were selected by sequence similarity to known PGLPs from microorganisms. The two encoded proteins were overexpressed in Escherichia coli and both show PGLP activity. T-DNA knockout of one of these genes, At5g36700, results in very low leaf PGLP activity. The mutant is unviable in normal air but grows well in air enriched with 0.9% CO(2). In contrast, deletion of At5g47760 does not result in a visible phenotype, and leaf PGLP activity is unaltered. Sequencing of genomic DNA from another PGLP-deficient mutant revealed a combined missense and missplicing point mutation in At5g36700. These combined data establish At5g36700 as the gene encoding the photorespiratory PGLP, PGLP1.  相似文献   

11.
A mutant of Arabidopsis thaliana (L.) Heyn. (a small plant in the crucifer family) that lacks glycine decarboxylase activity owing to a recessive nuclear mutation has been isolated on the basis of a growth requirement for high concentrations of atmospheric CO2. Mitochondria isolated from leaves of the mutant did not exhibit glycine-dependent O2 consumption, did not release 14CO2 from [14C]glycine, and did not catalyse the glycine-bicarbonate exchange reaction that is considered to be the first partial reaction associated with glycine cleavage. Photosynthesis in the mutant was decreased after illumination under atmospheric conditions that promote partitioning of carbon into intermediates of the photorespiratory pathway, but was not impaired under non-photorespiratory conditions. Thus glycine decarboxylase activity is not required for any essential function unrelated to photorespiration. The photosynthetic response of the mutant in photorespiratory conditions is probably caused by an increased rate of glyoxylate oxidation, which results from the sequestering of all readily transferable amino groups in a metabolically inactive glycine pool, and by a depletion of intermediates from the photosynthesis cycle. The rate of release of 14CO2 from exogenously applied [14C]glycollate was 14-fold lower in the mutant than in the wild type, suggesting that glycine decarboxylation is the only significant source of photorespiratory CO2.  相似文献   

12.
Mitochondrial serine hydroxymethyltransferase (SHMT), combined with glycine decarboxylase, catalyzes an essential sequence of the photorespiratory C2 cycle, namely, the conversion of two molecules of glycine into one molecule each of CO2, NH4+, and serine. The Arabidopsis (Arabidopsis thaliana) mutant shm (now designated shm1-1) is defective in mitochondrial SHMT activity and displays a lethal photorespiratory phenotype when grown at ambient CO2, but is virtually unaffected at elevated CO2. The Arabidopsis genome harbors seven putative SHM genes, two of which (SHM1 and SHM2) feature predicted mitochondrial targeting signals. We have mapped shm1-1 to the position of the SHM1 gene (At4g37930). The mutation is due to a G --> A transition at the 5' splice site of intron 6 of SHM1, causing aberrant splicing and a premature termination of translation. A T-DNA insertion allele of SHM1, shm1-2, and the F1 progeny of a genetic cross between shm1-1 and shm1-2 displayed the same conditional lethal phenotype as shm1-1. Expression of wild-type SHM1 under the control of either the cauliflower mosaic virus 35S or the SHM1 promoter in shm1-1 abrogated the photorespiratory phenotype of the shm mutant, whereas overexpression of SHM2 or expression of SHM1 under the control of the SHM2 promoter did not rescue the mutant phenotype. Promoter-beta-glucuronidase analyses revealed that SHM1 is predominantly expressed in leaves, whereas SHM2 is mainly transcribed in the shoot apical meristem and roots. Our findings establish SHM1 as the defective gene in the Arabidopsis shm1-1 mutant.  相似文献   

13.
Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO(2) assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment.  相似文献   

14.
Glycine-accumulating mutants of barley (Hordeum vulgare L.) and Amaranthus edulis (Speg.), which lack the ability to decarboxylate glycine by glycine decarboxylase (GDC; EC 2.1.2.10), were used to study the significance of an alternative photorespiratory pathway of serine formation. In the normal photorespiratory pathway, 5,10-methylenetetrahydrofolate is formed in the reaction catalysed by GDC and transferred to serine by serine hydroxymethyltransferase. In an alternative pathway, glyoxylate could be decarboxylated to formate and formate could be converted into 5,10-methylenetetrahydrofolate in the C1-tetrahydrofolate synthase pathway. In contrast to wild-type plants, the mutants showed a light-dependent accumulation of glyoxylate and formate, which was suppressed by elevated (0.7%) CO2 concentrations. After growth in air, the activity and amount of 10-formyltetrahydrofolate synthetase (FTHF synthetase; EC 6.3.4.4), the first enzyme of the conversion of formate into 5,10-methylenetetrahydrofolate, were increased in the mutants compared to the wild types. A similar increase in FTHF synthetase could be induced by incubating leaves of wild-type plants with glycine under illumination, but not in the dark. Experiments with 14C showed that the barley mutants incorporated [14C]formate and [2-14C]glycollate into serine. Together, the accumulation of glyoxylate and formate under photorespiratory conditions, the increase in FTHF synthetase and the ability to utilise formate and glycollate for the formation of serine indicate that the mutants are able partially to compensate for the lack of GDC activity by bypassing the normal photorespiratory pathway. Received: 14 August 1998 / Accepted: 30 September 1998  相似文献   

15.
5-Formyltetrahydrofolate (5-CHO-THF) is formed via a second catalytic activity of serine hydroxymethyltransferase (SHMT) and strongly inhibits SHMT and other folate-dependent enzymes in vitro. The only enzyme known to metabolize 5-CHO-THF is 5-CHO-THF cycloligase (5-FCL), which catalyzes its conversion to 5,10-methenyltetrahydrofolate. Because 5-FCL is mitochondrial in plants and mitochondrial SHMT is central to photorespiration, we examined the impact of an insertional mutation in the Arabidopsis 5-FCL gene (At5g13050) under photorespiratory (30 and 370 micromol of CO2 mol(-1)) and non-photorespiratory (3200 micromol of CO2 mol(-1)) conditions. The mutation had only mild visible effects at 370 micromol of CO2 mol(-1), reducing growth rate by approximately 20% and delaying flowering by 1 week. However, the mutation doubled leaf 5-CHO-THF level under all conditions and, under photorespiratory conditions, quadrupled the pool of 10-formyl-/5,10-methenyltetrahydrofolates (which could not be distinguished analytically). At 370 micromol of CO2 mol(-1), the mitochondrial 5-CHO-THF pool was 8-fold larger in the mutant and contained most of the 5-CHO-THF in the leaf. In contrast, the buildup of 10-formyl-/5,10-methenyltetrahydrofolates was extramitochondrial. In photorespiratory conditions, leaf glycine levels were up to 46-fold higher in the mutant than in the wild type. Furthermore, when leaves were supplied with 5-CHO-THF, glycine accumulated in both wild type and mutant. These data establish that 5-CHO-THF can inhibit SHMT in vivo and thereby influence glycine pool size. However, the near-normal growth of the mutant shows that even exceptionally high 5-CHO-THF levels do not much affect fluxes through SHMT or any other folate-dependent reaction, i.e. that 5-CHO-THF is well tolerated in plants.  相似文献   

16.
17.
18.
19.
Mitogen‐activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single‐mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double‐mutants are created from a large library of single‐mutant lines. Here we describe a new collection of 275 double‐mutant lines derived from a library of single‐mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high‐throughput double‐mutant generating pipeline using a system for growing Arabidopsis seedlings in 96‐well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double‐mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single‐mutant line. Seeds for this double‐mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double‐mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling.  相似文献   

20.
The multienzyme glycine cleavage system (GCS) converts glycine and tetrahydrofolate to the one‐carbon compound 5,10‐methylenetetrahydrofolate, which is of vital importance for most if not all organisms. Photorespiring plant mitochondria contain very high levels of GCS proteins organised as a fragile glycine decarboxylase complex (GDC). The aim of this study is to provide mass spectrometry‐based stoichiometric data for the plant leaf GDC and examine whether complex formation could be a general property of the GCS in photosynthesizing organisms. The molar ratios of the leaf GDC component proteins are 1L2‐4P2‐8T‐26H and 1L2‐4P2‐8T‐20H for pea and Arabidopsis, respectively, as determined by mass spectrometry. The minimum mass of the plant leaf GDC ranges from 1550 to 1650 kDa, which is larger than previously assumed. The Arabidopsis GDC contains four times more of the isoforms GCS‐P1 and GCS‐L1 in comparison with GCS‐P2 and GCS‐L2, respectively, whereas the H‐isoproteins GCS‐H1 and GCS‐H3 are fully redundant as indicated by their about equal amounts. Isoform GCS‐H2 is not present in leaf mitochondria. In the cyanobacterium Synechocystis sp. PCC 6803, GCS proteins concentrations are low but above the complex formation threshold reported for pea leaf GDC. Indeed, formation of a cyanobacterial GDC from the individual recombinant GCS proteins in vitro could be demonstrated. Presence and metabolic significance of a Synechocystis GDC in vivo remain to be examined but could involve multimers of the GCS H‐protein that dynamically crosslink the three GCS enzyme proteins, facilitating glycine metabolism by the formation of multienzyme metabolic complexes. Data are available via ProteomeXchange with identifier PXD018211.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号