首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Living cells oscillate between the two states of quiescence and division that stand poles apart in terms of energy requirements, macromolecular composition and structural organization and in which they fulfill dichotomous activities. Division is a highly dynamic and energy-consuming process that needs be carefully orchestrated to ensure the faithful transmission of the mother genotype to daughter cells. Quiescence is a low-energy state in which a cell may still have to struggle hard to maintain its homeostasis in the face of adversity while waiting sometimes for long periods before finding a propitious niche to reproduce. Thus, the perpetuation of single cells rests upon their ability to elaborate robust quiescent and dividing states. This led yeast and mammalian cells to evolve rigorous Start [L.H. Hartwell, J. Culotti, J. Pringle, B.J. Reid, Genetic control of the cell division cycle in yeast, Science 183 (1974) 46–51] and restriction (R) points [A.B. Pardee, A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. U. S. A. 71 (1974) 1286–1290], respectively, that reduce deadly interferences between the two states by enforcing their temporal insulation though still enabling a rapid transition from one to the other upon an unpredictable change in their environment. The constitutive cells of multicelled organisms are extremely sensitive in addition to the nature of their adhering support that fluctuates depending on developmental stage and tissue specificity. Metazoan evolution has entailed, therefore, the need for exceedingly flexible anchorage-dependent R points empowered to assist cells in switching between quiescence and division at various times, places and conditions in the same organism. Programmed cell death may have evolved concurrently in specific contexts unfit for the operation of a stringent R point that increase the risk of deadly interferences between the two states (as it happens notably during development). But, because of their innate flexibility, anchorage-dependent R points have also the ability to readily adjust to a changing structural context so as to give mutated cells a chance to reproduce, thereby encouraging tumor genesis. The Rb and p53 proteins, which are regulated by the two products of the Ink4a-Arf locus [C.J. Sherr, The INK4a/ARF network in tumor suppression, Nat. Rev., Mol. Cell Biol. 2 (2001) 731–737], govern separable though interconnected pathways that cooperate to restrain cyclin D- and cyclin E-dependent kinases from precipitating untimely R point transit. The expression levels of the Ink4a and Arf proteins are especially sensitive to changes in cellular shape and adhesion that entirely remodel at the time when cells shift between quiescence and division. The Arf proteins further display an extremely high translational sensitivity and can activate the p53 pathway to delay R point transit, but, only when released from the nucleolus, ‘an organelle formed by the act of building a ribosome’ [T. Mélèse, Z. Xue, The nucleolus: an organelle formed by the act of building a ribosome, Curr. Opin. Cell Biol. 7 (1995) 319–324]. In this way, the Ink4a/Rb and Arf/p53 pathways emerge as key regulators of anchorage-dependent R point transit in mammalian cells and their deregulation is, indeed, a rule in human cancers. Thus, by selecting the nucleolus to mitigate cell cycle control by the Arf proteins, mammalian cells succeeded in forging a highly flexible R point enabling them to match cell division with a growth rate imposed by factors controlling nucleolar assembling, such as nutrients and adhesion. It is noteworthy that nutrient control of critical size at Start in budding yeast has been shown recently to be governed by a nucleolar protein interaction network [P. Jorgensen, J.L. Nishikawa, B.-J. Breitkreutz, M. Tyers, Systematic identification of pathways that couple cell growth and division in yeast, Science 297 (2002) 395–400].  相似文献   

2.
The Ink4/Arf locus encodes two tumour-suppressor proteins, p16Ink4a and p19Arf, that govern the antiproliferative functions of the retinoblastoma and p53 proteins, respectively. Here we show that Arf binds to the product of the Mdm2 gene and sequesters it into the nucleolus, thereby preventing negative-feedback regulation of p53 by Mdm2 and leading to the activation of p53 in the nucleoplasm. Arf and Mdm2 co-localize in the nucleolus in response to activation of the oncoprotein Myc and as mouse fibroblasts undergo replicative senescence. These topological interactions of Arf and Mdm2 point towards a new mechanism for p53 activation.  相似文献   

3.
The proteins encoded by the Ink4/Arf locus, p16Ink4a, p19Arf and p15Ink4b are major tumour suppressors that oppose aberrant mitogenic signals. The expression levels of the locus are progressively increased during aging and genome-wide association studies have linked the locus to a number of aging-associated diseases and frailty in humans. However, direct measurement of the global impact of the Ink4/Arf locus on organismal aging and longevity was lacking. In this work, we have examined the fertility, cancer susceptibility, aging and longevity of mice genetically modified to carry one ( Ink4/Arf -tg) or two ( Ink4/Arf -tg/tg) intact additional copies of the locus. First, increased gene dosage of Ink4/Arf impairs the production of male germ cells, and in the case of Ink4/Arf -tg/tg mice results in a Sertoli cell-only-like syndrome and a complete absence of sperm. Regarding cancer, there is a lower incidence of aging-associated cancer proportional to the Ink4/Arf gene dosage. Interestingly, increased Ink4/Arf gene dosage resulted in lower scores in aging markers and in extended median longevity. The increased survival was also observed in cancer-free mice indicating that cancer protection and delayed aging are separable activities of the Ink4/Arf locus. In contrast to these results, mice carrying one or two additional copies of the p53 gene ( p53 -tg and p53 -tg/tg) had a normal longevity despite their increased cancer protection. We conclude that the Ink4/Arf locus has a global anti-aging effect, probably by favouring quiescence and preventing unnecessary proliferation.  相似文献   

4.
Pre-B-cell transformation by Abelson virus (Ab-MLV) is a multistep process in which primary transformants are stimulated to proliferate but subsequently undergo crisis, a period of erratic growth marked by high levels of apoptosis. Inactivation of the p53 tumor suppressor pathway is an important step in this process and can be accomplished by mutation of p53 or down-modulation of p19(Arf), a p53 regulatory protein. Consistent with these data, pre-B cells from either p53 or Ink4a/Arf null mice bypass crisis. However, the Ink4a/Arf locus encodes both p19(Arf) and a second tumor suppressor, p16(Ink4a), that blocks cell cycle progression by inhibiting Cdk4/6. To determine if p16(Ink4a) plays a role in Ab-MLV transformation, primary transformants derived from Arf(-/-) and p16(Ink4a(-/-)) mice were compared. A fraction of those derived from Arf(-/-) animals underwent crisis, and even though all p16(Ink4a(-/-)) primary transformants experienced crisis, these cells became established more readily than cells derived from +/+ mice. Analyses of Ink4a/Arf(-/-) cells infected with a virus that expresses both v-Abl and p16(Ink4a) revealed that p16(Ink4a) expression does not alter cell cycle profiles but does increase the level of apoptosis in primary transformants. These results indicate that both products of the Ink4a/Arf locus influence Ab-MLV transformation and reveal that in addition to its well-recognized effects on the cell cycle, p16(Ink4a) can suppress transformation by inducing apoptosis.  相似文献   

5.
6.
Tumor suppression by Ink4a-Arf: progress and puzzles   总被引:34,自引:0,他引:34  
  相似文献   

7.
8.
ABSTRACT: The cell cycle is a tightly controlled series of events that ultimately lead to cell division. The literature deciphering the molecular processes involved in regulating the consecutive cell cycle steps is colossal. By contrast, much less is known about non-dividing cellular states, even if they concern the vast majority of cells, from prokaryotes to multi-cellular organisms. Indeed, cells decide to enter the division cycle only if conditions are favourable. Otherwise they may enter quiescence, a reversible non-dividing cellular state. Recent studies in yeast have shed new light on the transition between proliferation and quiescence, re-questioning the notion of cell cycle commitment. They also indicate a predominant role for cellular metabolic status as a major regulator of quiescence establishment and exit. Additionally, a growing body of evidence indicates that environmental conditions, and notably the availability of various nutrients, by impinging on specific metabolic routes, directly regulate specific cellular re-organization that occurs upon proliferation/quiescence transitions.  相似文献   

9.
In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including the Ink4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived from Ink4a/Arf +/- mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.  相似文献   

10.
PolycombGroup (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer [1]. Mice without the PcG gene Bmi1 are runted and suffer from progressive loss of hematopoietic and neural stem cells [2-4]. Here, we assess the effects of Bmi1 on stem cells and differentiation of an epithelial tissue in vivo. We chose the mammary gland because it allows limiting dilution transplantations [5, 6] and because Bmi1 is overexpressed in breast cancer [7, 8]. Our analyses show that Bmi1 is expressed in all cells of the mouse mammary gland and is especially high in luminal cells. Loss of Bmi1 results in a severe mammary-epithelium growth defect, which can be rescued by codeletion of the Ink4a/Arf locus or pregnancy. Even though mammary stem cells are present in the absence of Bmi1, their activity is reduced, and this is only partially due to Ink4a/Arf expression. Interestingly, loss of Bmi1 causes premature lobuloalveolar differentiation, whereas overexpression of Bmi1 inhibits lobuloalveolar differentiation induced by pregnancy hormones. Because Bmi1 affects not only mammary stem cells but also more committed cells, our data warrant a more detailed analysis of the different roles of Bmi1 in breast-cancer etiology.  相似文献   

11.
The CDKN2A/ARF locus encompasses overlapping tumor suppressor genes p16(INK4A) and p14(ARF), which are frequently co-deleted in human malignant mesothelioma (MM). The importance of p16(INK4A) loss in human cancer is well established, but the relative significance of p14(ARF) loss has been debated. The tumor predisposition of mice singly deficient for either Ink4a or Arf, due to targeting of exons 1α or 1β, respectively, supports the idea that both play significant and nonredundant roles in suppressing spontaneous tumors. To further test this notion, we exposed Ink4a(+/-) and Arf(+/-) mice to asbestos, the major cause of MM. Asbestos-treated Ink4a(+/-) and Arf(+/-) mice showed increased incidence and shorter latency of MM relative to wild-type littermates. MMs from Ink4a(+/-) mice exhibited biallelic inactivation of Ink4a, loss of Arf or p53 expression and frequent loss of p15(Ink4b). In contrast, MMs from Arf(+/-) mice exhibited loss of Arf expression, but did not require loss of Ink4a or Ink4b. Mice doubly deficient for Ink4a and Arf, due to deletion of Cdkn2a/Arf exon 2, showed accelerated asbestos-induced MM formation relative to mice deficient for Ink4a or Arf alone, and MMs exhibited biallelic loss of both tumor suppressor genes. The tumor suppressor function of Arf in MM was p53-independent, since MMs with loss of Arf retained functional p53. Collectively, these in vivo data indicate that both CDKN2A/ARF gene products suppress asbestos carcinogenicity. Furthermore, while inactivation of Arf appears to be crucial for MM pathogenesis, the inactivation of both p16(Ink4a) and p19(Arf) cooperate to accelerate asbestos-induced tumorigenesis.  相似文献   

12.
13.
In contrast to cancer cells and embryonic stem cells, the lifespan of primary human cells is finite. After a defined number of population doublings, cells enter in an irreversible growth-arrested state termed replicative senescence. Mutations of genes involved in immortalization can contribute to cancer. In a genetic screen for cDNAs bypassing replicative senescence of normal human prostate epithelial cells (HPrEC), we identified CBX7, a gene that encodes a Polycomb protein, as shown by sequence homology, its interaction with Ring1 and its localization to nuclear Polycomb bodies. CBX7 extends the lifespan of a wide range of normal human cells and immortalizes mouse fibroblasts by downregulating expression of the Ink4a/Arf locus. CBX7 does not inter-function or colocalize with Bmi1, and both can exert their actions independently of each other as shown by reverse genetics. CBX7 expression is downregulated during replicative senescence and its ablation by short-hairpin RNA (shRNA) treatment inhibited growth of normal cells though induction of the Ink4a/Arf locus. Taken together, these data show that CBX7 controls cellular lifespan through regulation of both the p16(Ink4a)/Rb and the Arf/p53 pathways.  相似文献   

14.
The impairment of the activity of the brain is a major feature of aging, which coincides with a decrease in the function of neural stem cells. We have previously shown that an extra copy of regulated Ink4/Arf and p53 activity, in s‐Ink4/Arf/p53 mice, elongates lifespan and delays aging. In this work, we examined the physiology of the s‐Ink4/Arf/p53 brain with aging, focusing on the neural stem cell (NSC) population. We show that cells derived from old s‐Ink4/Arf/p53 mice display enhanced neurosphere formation and self‐renewal activity compared with wt controls. This correlates with augmented expression of Sox2, Sox9, Glast, Ascl1, and Ars2 NSC markers in the subventricular zone (SVZ) and in the subgranular zone of the dentate gyrus (DG) niches. Furthermore, aged s‐Ink4/Arf/p53 mice express higher levels of Doublecortin and PSA‐NCAM (neuroblasts) and NeuN (neurons) in the olfactory bulbs (OB) and DG, indicating increased neurogenesis in vivo. Finally, aged s‐Ink4/Arf/p53 mice present enhanced behavioral and neuromuscular coordination activity. Together, these findings demonstrate that increased but regulated Ink4/Arf and p53 activity ameliorates age‐related deterioration of the central nervous system activity required to maintain the stem cell pool, providing a mechanism not only for the extended lifespan but also for the health span of these mice.  相似文献   

15.
Small GTP-binding Proteins and their Functions in Plants   总被引:2,自引:0,他引:2  
Small GTP-binding proteins exist in eukaryotes from yeast to animals to plants and constitute a superfamily whose members function as molecular switches that cycle between “active” and “inactive” states. They regulate a wide variety of cell functions such as signal transduction, cell proliferation, cytoskeletal organization, intracellular membrane trafficking, and gene expression. In yeast and animals, this superfamily is structurally classified into at least five families: the Ras, Rho, Rab, Arf/Sar1, and Ran families. However, plants contain Rab, Rho, Arf, and Ran homologs, but no Ras. Small GTP-binding proteins have become an intensively studied group of regulators not only in yeast and animals but also in plants in recent years. In this article we briefly review the class and structure of small GTP-binding proteins. Their working modes and functions in animals and yeast are listed, and the functions of individual members of these families in plants are discussed, with the emphasis on the recently revealed plant-specific roles of these proteins, including their cross-talk with plant hormones and other signals, regulation of organogenesis (leaf, root, and embryo), polar growth, cell division, and involvement in various stress and defense responses.  相似文献   

16.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most frequently diagnosed cancers and the fourth leading cause of cancer‐related death in the United States, suggesting that there is an urgent need to design novel strategies for achieving better treatment outcome of patients diagnosed with PDAC. Our previous study has shown that activation of Notch and NF‐κB play a critical role in the development of PDAC in the compound K‐RasG12D and Ink4a/Arf deficient transgenic mice. However, the exact molecular mechanism by which mutated K‐Ras and Ink4a/Arf deficiency contribute to progression of PDAC remains largely elusive. In the present study, we used multiple methods, such as real‐time RT‐PCR, Western blotting assay, and immunohistochemistry to gain further mechanistic insight. We found that the deletion of Ink4a/Arf in K‐RasG12D expressing mice led to high expression of PDGF‐D signaling pathway in the tumor and tumor‐derived cell line (RInk‐1 cells). Furthermore, PDGF‐D knock‐down in RInk‐1 cells resulted in the inhibition of pancreatosphere formation and down‐regulation of EZH2, CD44, EpCAM, and vimentin. Moreover, we demonstrated that epithelial–mesenchymal transition (EMT) was induced in the compound mice, which is linked with aggressiveness of PDAC. In addition, we demonstrated that tumors from compound transgenic mice have higher expression of cancer stem cell (CSC) markers. These results suggest that the acquisition of EMT phenotype and induction of CSC characteristics could be linked with the aggressiveness of PDAC mediated in part through the activation of PDGF‐D, signaling. J. Cell. Physiol. 228: 556–562, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The v-Abl protein encoded by Abelson murine leukemia virus (Ab-MLV) induces transformation of pre-B cells via a two-stage process. An initial proliferative phase during which cells with limited tumorigenic potential expand is followed by a crisis period marked by high levels of apoptosis and erratic growth. Transformants that survive this phase emerge as fully malignant cells and usually contain mutations that disable the p53 tumor suppressor pathway. Consistent with the importance of p53 in this process, pre-B cells from p53 null animals bypass crisis. Thus, the transformation process reflects a balance between signals from the v-Abl protein that drive transformation and those coming from the cellular response to inappropriate growth. One prediction of this hypothesis is that Ab-MLV mutants that are compromised in their ability to transform cells may be less equipped to overcome the effects of p53. To test this idea, we examined the ability of the P120/R273K mutant to transform pre-B cells from wild-type, p53 null, and Ink4a/Arf null mice. The SH2 domain of the v-Abl protein encoded by this mutant contains a substitution that affects the phosphotyrosine-binding pocket, and this mutant is compromised in its ability to transform NIH 3T3 and pre-B cells, especially at 39.5 degrees C. Our data reveal that loss of p53 or Ink4a/Arf locus products complements the transforming defect of the P120/R273K mutant, but it does not completely restore wild-type function. These results indicate that one important transforming function of v-Abl proteins is overcoming the effects of a functional p53 pathway.  相似文献   

18.
Expression of p16(Ink4a) and p19(Arf) increases with age in both rodent and human tissues. However, whether these tumour suppressors are effectors of ageing remains unclear, mainly because knockout mice lacking p16(Ink4a) or p19(Arf) die early of tumours. Here, we show that skeletal muscle and fat, two tissues that develop early ageing-associated phenotypes in response to BubR1 insufficiency, have high levels of p16(Ink4a) and p19(Arf). Inactivation of p16(Ink4a) in BubR1-insufficient mice attenuates both cellular senescence and premature ageing in these tissues. Conversely, p19(Arf) inactivation exacerbates senescence and ageing in BubR1 mutant mice. Thus, we identify BubR1 insufficiency as a trigger for activation of the Cdkn2a locus in certain mouse tissues, and demonstrate that p16(Ink4a) is an effector and p19(Arf) an attenuator of senescence and ageing in these tissues.  相似文献   

19.
"Sleeping beauty": quiescence in Saccharomyces cerevisiae.   总被引:1,自引:0,他引:1  
The cells of organisms as diverse as bacteria and humans can enter stable, nonproliferating quiescent states. Quiescent cells of eukaryotic and prokaryotic microorganisms can survive for long periods without nutrients. This alternative state of cells is still poorly understood, yet much benefit is to be gained by understanding it both scientifically and with reference to human health. Here, we review our knowledge of one "model" quiescent cell population, in cultures of yeast grown to stationary phase in rich media. We outline the importance of understanding quiescence, summarize the properties of quiescent yeast cells, and clarify some definitions of the state. We propose that the processes by which a cell enters into, maintains viability in, and exits from quiescence are best viewed as an environmentally triggered cycle: the cell quiescence cycle. We synthesize what is known about the mechanisms by which yeast cells enter into quiescence, including the possible roles of the protein kinase A, TOR, protein kinase C, and Snf1p pathways. We also discuss selected mechanisms by which quiescent cells maintain viability, including metabolism, protein modification, and redox homeostasis. Finally, we outline what is known about the process by which cells exit from quiescence when nutrients again become available.  相似文献   

20.
Epithelial tumors of the pancreas exhibit a wide spectrum of histologies with varying propensities for metastasis and tissue invasion. The histogenic relationship among these tumor types is not well established; moreover, the specific role of genetic lesions in the progression of these malignancies is largely undefined. Transgenic mice with ectopic expression of transforming growth factor alpha (TGF-alpha) in the pancreatic acinar cells develop tubular metaplasia, a potential premalignant lesion of the pancreatic ductal epithelium. To evaluate the cooperative interactions between TGF-alpha and signature mutations in pancreatic tumor genesis and progression, TGFalpha transgenic mice were crossed onto Ink4a/Arf and/or p53 mutant backgrounds. These compound mutant mice developed a novel pancreatic neoplasm, serous cystadenoma (SCA), presenting as large epithelial tumors bearing conspicuous gross and histological resemblances to their human counterpart. TGFalpha animals heterozygous for both the Ink4a/Arf and the p53 mutation showed a dramatically increased incidence of SCA, indicating synergistic interaction of these alleles. Inactivation of p16(Ink4a) by loss of heterozygosity, intragenic mutation, or promoter hypermethylation was a common feature in these SCAs, and correspondingly, none of the tumors expressed wild-type p16(Ink4a). All tumors sustained loss of p53 or Arf, generally in a mutually exclusive fashion. The tumor incidence data and molecular profiles establish a pathogenic role for the dual inactivation of p16(Ink4a) and p19(Arf)-p53 in the development of SCA in mice, demonstrating that p16(Ink4a) is a murine tumor suppressor. This genetically defined model provides insights into the molecular pathogenesis of SCA and serves as a platform for dissection of cell-specific programs of epithelial tumor suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号