首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythropoietic protoporphyria (EPP; MIM 177000) is an inherited disorder caused by partial deficiency of ferrochelatase (FECH), the last enzyme in the heme biosynthetic pathway. In EPP patients, the FECH deficiency causes accumulation of free protoporphyrin in the erythron, associated with a painful skin photosensitivity. In rare cases, the massive accumulation of protoporphyrin in hepatocytes may lead to a rapidly progressive liver failure. The mode of inheritance in EPP is complex and can be either autosomal dominant with low clinical penetrance, as it is in most cases, or autosomal recessive. To acquire an in-depth knowledge of the genetic basis of EPP, we conducted a systematic mutation analysis of the FECH gene, following a procedure that combines the exon-by-exon denaturing-gradient-gel-electrophoresis screening of the FECH genomic DNA and direct sequencing. Twenty different mutations, 15 of which are newly described here, have been characterized in 26 of 29 EPP patients of Swiss and French origin. All the EPP patients, including those with liver complications, were heterozygous for the mutations identified in the FECH gene. The deleterious effect of all missense mutations has been assessed by bacterial expression of the respective FECH cDNAs generated by site-directed mutagenesis. Mutations leading to a null allele were a common feature among three EPP pedigrees with liver complications. Our systematic molecular study has resulted in a significant enlargement of the mutation repertoire in the FECH gene and has shed new light on the hereditary behavior of EPP.  相似文献   

2.
A deficiency of ferrochelatase (FECH) activity underlies the excess accumulation of protoporphyrin that occurs in erythropoietic protoporphyria (EPP). In some patients, protoporphyrin accumulation causes liver damage that necessitates liver transplantation. The purpose of this study was to determine if specific mutations in the FECH gene are present in patients who develop liver disease. FECH cDNA and all 11 exons and their flanking intron regions in the FECH gene were amplified and sequenced by specific polymerase chain reactions. Gene mutations were determined in 34 individuals from 24 families: 14 had liver disease, 10 necessitating liver transplantation. All individuals were heterozygous for mutations that altered the coding region of FECH mRNA. The mutations in patients with liver disease were heterogenous, but usually caused a major structural alterations in the FECH protein, most commonly as a result of exon skipping in FECH mRNA. However, the mutations could not account for the severe phenotype by themselves, since the same mutations were found in asymptomatic family members of patients with liver disease and in patients from families in which liver disease was not present. Other genetic factors, and possibly acquired factors, also must be critical to the development of this severe phenotype in EPP.  相似文献   

3.
Erythropoietic protoporphyria (EPP) is an inherited disorder of the haem metabolic pathway characterised by accumulation of protoporphyrin in blood, erythrocytes and tissues, and cutaneous manifestations of photosensitivity. EPP has been reported worldwide, with prevalence between 1:75,000 and 1:200,000. It usually manifests in early infancy upon the first sun exposures. EPP is characterised by cutaneous manifestations of acute painful photosensitivity with erythema and oedema, sometimes with petechiae, together with stinging and burning sensations upon exposure to sunlight, without blisters. These episodes have a variable severity depending on the exposure duration and may result in chronic permanent lesions on exposed skin. As protoporphyrin is a lipophilic molecule that is excreted by the liver, EPP patients are at risk of cholelithiasis with obstructive episodes, and chronic liver disease that might evolve to rapid acute liver failure. In most patients, EPP results from a partial deficiency of the last enzyme of the haem biosynthetic pathway, ferrochelatase, EC 4.99.1.1/FECH (encoded by the FECH gene). EPP appears to be inherited as an autosomal dominant disease, the clinical expression of which is modulated by the presence of the hypomorphic FECH IVS3-48C allele trans, but recessive inheritance with two mutated FECH alleles has also been described. In about 2% of patients, overt disease was recently shown to be caused by gain-of-function mutations in the erythroid-specific aminolevulinic acid synthase 2 (ALAS2/ALAS, EC 2.3.1.27) gene and named X-linked dominant protoporphyria. Diagnosis is established by finding increased levels of protoporphyrin in plasma and red blood cells, and detection of a plasma fluorescence peak at 634 nm. Investigations for hepatic involvement, ferrochelatase activity level, genetic analysis (FECH mutations, presence of the hypomorphic FECH IVS3-48C allele trans and ALAS2 mutations) and family studies are advisable. Differential diagnosis includes phototoxic drug reactions, hydroa vacciniforme, solar urticaria, contact dermatitis, angio-oedema and, in some cases, other types of porphyria. Management includes avoidance of exposure to light, reduction of protoporphyrin levels and prevention of progression of possible liver disease to liver failure. As the major risk in EPP patients is liver disease, a regular follow-up of hepatic involvement is essential. Sequential hepatic and bone marrow transplantation should be considered as a suitable treatment for most severe cases of EPP with hepatic involvement. EPP is a lifelong disorder whose prognosis depends on the evolution of the hepatic disease. However, photosensitivity may have a significant impact on quality of life of EPP patients.  相似文献   

4.
5.
Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inborn errors of heme biosynthesis with the same phenotype but resulting from autosomal recessive loss-of-function mutations in the ferrochelatase (FECH) gene and gain-of-function mutations in the X-linked erythroid-specific 5-aminolevulinate synthase (ALAS2) gene, respectively. The EPP phenotype is characterized by acute, painful, cutaneous photosensitivity and elevated erythrocyte protoporphyrin levels. We report the FECH and ALAS2 mutations in 155 unrelated North American patients with the EPP phenotype. FECH sequencing and dosage analyses identified 140 patients with EPP: 134 with one loss-of-function allele and the common IVS3-48T>C low expression allele, three with two loss-of-function mutations and three with one loss-of-function mutation and two low expression alleles. There were 48 previously reported and 23 novel FECH mutations. The remaining 15 probands had ALAS2 gain-of-function mutations causing XLP: 13 with the previously reported deletion, c.1706_1709delAGTG, and two with novel mutations, c.1734delG and c.1642C>T(p.Q548X). Notably, XLP represented ~10% of EPP phenotype patients in North America, two to five times more than in Western Europe. XLP males had twofold higher erythrocyte protoporphyrin levels than EPP patients, predisposing to more severe photosensitivity and liver disease. Identification of XLP patients permits accurate diagnosis and counseling of at-risk relatives and asymptomatic heterozygotes.  相似文献   

6.
Erythropoietic protoporphyria (EPP) is an inherited disorder of heme biosynthesis that results from a partial deficiency of ferrochelatase (FECH). Recently, we have shown that the inheritance of the common hypomorphic IVS3-48C allele trans to a deleterious mutation reduces FECH activity to below a critical threshold and accounts for the photosensitivity seen in patients. Rare cases of autosomal recessive inheritance have been reported. We studied a cohort of 173 white French EPP families and a group of 360 unrelated healthy subjects from four ethnic groups. The prevalences of the recessive and dominant autosomal forms of EPP are 4% (95% confidence interval 1-8) and 95% (95% confidence interval 91-99), respectively. In 97.9% of dominant cases, an IVS3-48C allele is co-inherited with the deleterious mutation. The frequency of the IVS3-48C allele differs widely in the Japanese (43%), southeast Asian (31%), white French (11%), North African (2.7%), and black West African (<1%) populations. These differences can be related to the prevalence of EPP in these populations and could account for the absence of EPP in black subjects. The phylogenic origin of the IVS3-48C haplotypes strongly suggests that the IVS3-48C allele arose from a single recent mutational event. Estimation of the age of the IVS3-48C allele from haplotype data in white and Asian populations yields an estimated age three to four times younger in the Japanese than in the white population, and this difference may be attributable either to differing demographic histories or to positive selection for the IVS3-48C allele in the Asian population. Finally, by calculating the KA/KS ratio in humans and chimpanzees, we show that the FECH protein sequence is subject to strong negative pressure. Overall, EPP looks like a Mendelian disorder, in which the prevalence of overt disease depends mainly on the frequency of a single common single-nucleotide polymorphism resulting from a unique mutational event that occurred 60,000 years ago.  相似文献   

7.
Erythropoietic protoporphyria (EPP) is an inherited disorder of heme biosynthesis caused by partial ferrochelatase deficiency, resulting in protoporphyrin overproduction which is responsible for painful skin photosensitivity. Chronic liver disease is the most severe complication of EPP, requiring liver transplantation in some patients. Data from a mouse model suggest that cytotoxic bile formation with high concentrations of bile salts and protoporphyrin may cause biliary fibrosis by damaging bile duct epithelium. In humans, cholestasis is a result of intracellular and canalicular precipitation of protoporphyrin. To limit liver damage two strategies may be considered: the first is to reduce protoporphyrin production and the second is to enhance protoporphyrin excretion. Bile salts are known to increase protoporphyrin excretion via the bile, while heme arginate is used to decrease the production of porphyrins in acute attacks of hepatic porphyrias. The Griseofulvin-induced protoporphyria mouse model has been used to study several aspects of human protoporphyria including the effects of bile salts. However, the best EPP animal model is an ethylnitrosourea-induced point mutation with fully recessive transmission, named ferrochelatase deficiency (Fech(m1Pas)). Here we investigate the effect of early ursodesoxycholic acid (UDCA) administration and heme-arginate injections on the ferrochelatase deficient EPP mouse model. In this model UDCA administration and heme-arginate injections do not improve the protoporphyric condition of Fech(m1Pas)/Fech(m1Pas) mice.  相似文献   

8.
9.
We identified two additional mutations in the ferrochelatase gene in two Swiss patients with erythropoietic protoporphyria (EPP). Ferrochelatase cDNA from patients was amplified by the polymerase chain reaction (PCR) and subjected to mutation analysis by sequencing PCR products either directly or after subcloning. The first patient, who underwent liver transplantation because of terminal liver failure, was identified as having a single point mutation (C to T) at nucleotide 175 that resulted in a Gln to stop codon conversion in one allele of the gene. In the second case, in which the patient has so far no liver involvement, a two-base deletion (T899G900) was found in one allele. Frameshift as a result of the deletion creates a stop codon. This study presents two new genotypes of EPP, including one with liver failure, a rare and fatal form of EPP.  相似文献   

10.
ICF (Immunodeficiency, Centromeric instability and Facial anomalies) syndrome is a rare autosomal recessive disease caused by mutations in the DNA methyltransferase gene DNMT3B. To investigate the function of Dnmt3b in mouse development and to create animal models for ICF syndrome, we have generated three mutant alleles of Dnmt3b in mice: one carrying a deletion of the catalytic domain (null allele) and two carrying ICF-like missense mutations in the catalytic domain. The Dnmt3b null allele results in embryonic lethality from E14.5 to E16.5 with multiple tissue defects, including liver hypotrophy, ventricular septal defect and haemorrhage. By contrast, mice homozygous for the ICF mutations develop to term and some survive to adulthood. These mice show phenotypes that are reminiscent of ICF patients, including hypomethylation of repetitive sequences, low body weight, distinct cranial facial anomalies and T cell death by apoptosis. These results indicate that Dnmt3b plays an essential role at different stages of mouse development, and that ICF missense mutations cause partial loss of function. These mutant mice will be useful for further elucidation of the pathogenic and molecular mechanisms underlying ICF syndrome.  相似文献   

11.
Erythropoietic protoporphyria (EPP), attributable to deficiency of ferrochelatase activity (FECH), is characterised mainly by cutaneous photosensitivity. To define the molecular defect in two EPP-affected siblings and their parents in a Swiss family, ferrochelatase cDNA was amplified by the polymerase chain reaction (PCR) and subjected to sequence analysis. A 5-bp deletion (T580G584) was identified on one allele of the ferrochelatase gene in both patients and their mother. Screening of the mutation among family members by RsaI digestion of PCR-amplified genomic DNA revealed autosomal dominant inheritance associated with abnormal protoporphyrin concentration and enzyme activity. We also isolated ferrochelatase cDNAs containing a 18-bp insertion (part of the intron 2 sequence) between exons 2 and 3; this corresponded to six extra amino acids (YESNIR) inserted between Arg-65 and Lys-66 of the known ferrochelatase. This isoform was identified initially in mRNAs derived from both alleles of the ferrochelatase gene in one patient. Its existence was confirmed in six additional EPP patients, in five out of seven controls, and in four different cell lines (fibroblast, muscle, hepatoma and myelogenous leukaemia). This isoform, roughly 20% of the total ferrochelatase mRNA, was generated through splicing at a second donor site in intron 2 and its presence was not linked to EPP.  相似文献   

12.
13.
Ferenci P 《Human genetics》2006,120(2):151-159
Wilson disease is an autosomal recessive inherited disorder of copper metabolism. The Wilson disease gene codes for a copper transporting P-type ATPase (ATP7B). Molecular genetic analysis reveals at least 300 distinct mutations. While most reported mutations occur in single families, a few are more common. The most common mutation in patients from Central, Eastern, and Northern Europe is the point mutation H1069Q (exon 14). About 50–80% of Wilson disease (WD) patients from these countries carry at least one allele with this mutation with an allele frequency ranging between 30 and 70%. Other common mutations in Central and Eastern Europe are located on exon 8 (2299insC, G710S), exon 15 (3400delC) and exon 13 (R969Q). The allele frequency of these mutations is lower than 10%. In Mediterranean countries there is a wide range of mutations, the frequency of each of them varies considerably from country to country. In Sardinia, a unique deletion in the 5′ UTR (−441/−427 del) is very frequent. In mainland Spain the missense mutation M645R in exon 6 is particularly common. Data from non-European countries are scarce. Most data from Asia are from Far Eastern areas (China, South Korea and Japan) where the R778L missense mutation in exon 8 is found with an allele frequency of 14–49%. In summary, given the constant improvement of analytic tools genetic testing will become an integral part for the diagnosis of WD. Knowledge of the differences in the worldwide distribution of particular mutations will help to design shortcuts for genetic diagnosis of WD.  相似文献   

14.
d-2-hydroxyglutaric aciduria is a neurometabolic disorder with both a mild and a severe phenotype and with unknown etiology. Recently, a novel enzyme, d-2-hydroxyglutarate dehydrogenase, which converts d-2-hydroxyglutarate into 2-ketoglutarate, and its gene were identified. In the genes of two unrelated patients affected with d-2-hydroxyglutaric aciduria, we identified disease-causing mutations. One patient was homozygous for a missense mutation (c.1331T-->C; p.Val444Ala). The other patient was compound heterozygous for a missense mutation (c.440T-->G; p.Ile147Ser) and a splice-site mutation (IVS1-23A-->G) that resulted in a null allele. Overexpression studies in HEK-293 cells of proteins containing the missense mutations showed a marked reduction of d-2-hydroxyglutarate dehydrogenase activity, proving that mutations in the d-2-hydroxyglutarate dehydrogenase gene cause d-2-hydroxyglutaric aciduria.  相似文献   

15.
Mutations of Jagged 1 (JAG1), a ligand in the Notch signaling pathway, cause Alagille syndrome (AGS). AGS is an autosomal dominant, multisystem disorder with variable expressivity, characterized by bile duct paucity and resultant liver disease in combination with cardiac, ocular, skeletal, and facial findings. JAG1 mutations in AGS include gene deletions and protein truncating, splicing, and missense mutations, suggesting that haploinsufficiency is the mechanism of disease causation. With limited exceptions, there is no genotype-phenotype correlation. We have studied a JAG1 missense mutation (JAG1-G274D) that was previously identified in 13 individuals from an extended family with cardiac defects of the type seen in patients with AGS (e.g., peripheral pulmonic stenosis and tetralogy of Fallot) in the absence of liver dysfunction. Our data indicate that this mutation is "leaky." Two populations of proteins are produced from this allele. One population is abnormally glycosylated and is retained intracellularly rather than being transported to the cell surface. A second population is normally glycosylated and is transported to the cell surface, where it is able to signal to the Notch receptor. The JAG1-G274D protein is temperature sensitive, with more abnormally glycosylated (and nonfunctional) molecules produced at higher temperatures. Carriers of this mutation therefore have >50% but <100% of the normal concentration of JAG1 molecules on the cell surface. The cardiac-specific phenotype associated with this mutation suggests that the developing heart is more sensitive than the developing liver to decreased dosage of JAG1.  相似文献   

16.
The porphyrias are disorders associated with inherited or acquired enzyme deficiencies in the heme biosynthetic pathway. The differential diagnosis is often difficult since the phenotype is very similar in some forms and the biochemical tests are not commonly available. Here we provide an update on the molecular diagnosis of porphyrias in Italy and a flow-chart to facilitate the identification of mutations in heme biosynthetic genes. The molecular analysis has allowed us to identify the molecular defect underlying the disease in 66 probands with different porphyrias [acute intermittent porphyria (AIP), variegate porphyria (VP), porphyria cutanea tarda (PCT), erythropoietic protoporphyria (EPP)]. No Italian patients with defects in coproporphyrinogen oxidise (CPOX) gene, responsible for hereditary coproporphyria (HCP), have been detected. The molecular characterization has been extended to 115 relatives with the identification of 55 asymptomatic mutation carriers and 60 normal subjects. We have so far identified 50 different mutations among 4 genes associated with the most common porphyrias showing a high molecular heterogeneity: 22 in the hydroxymethylbilane synthase (HMBS) gene (AIP), 7 in the protoporphyrinogen oxidase (PPOX) gene (VP), 16 in the uroporphyrinogen decarboxylase (UROD) gene (PCT) and 5 in the ferrochelatase (FECH) gene (EPP). Among the 50 molecular defects, 29 seem to be restricted to the Italian population.  相似文献   

17.
The problem of interpreting missense mutations of disease-causing genes is an increasingly important one. Because these point mutations result in alteration of only a single amino acid of the protein product, it is often unclear whether this change alone is sufficient to cause disease. We propose a Bayesian approach that utilizes genetic information on affected relatives in families ascertained through known missense-mutation carriers. This method is useful in evaluating known disease genes for common disease phenotypes, such as breast cancer or colorectal cancer. The posterior probability that a missense mutation is disease causing is conditioned on the relationship of the relatives to the proband, the population frequency of the mutation, and the phenocopy rate of the disease. The approach is demonstrated in two cancer data sets: BRCA1 R841W and APC I1307K. In both examples, this method helps establish that these mutations are likely to be disease causing, with Bayes factors in favor of causality of 5.09 and 66.97, respectively, and posterior probabilities of .836 and .985. We also develop a simple approximation for rare alleles and consider the case of unknown penetrance and allele frequency.  相似文献   

18.
Gyrate atrophy (GA) is an autosomal recessive eye disease involving a progressive loss of vision due to chorioretinal degeneration in which the mitochondrial matrix enzyme ornithine aminotransferase (OAT) is defective. Two sisters with GA are described in this study in whom an A-to-G substitution at the 3 splice acceptor site of intron 4 in one allele of the OAT gene results in a truncated OAT mRNA devoid of exon 5 sequence. The mutation in the other allele was identified to be a missense mutation at codon 318 by denaturing gradient gel electrophoresis and direct sequencing of the polymerase chain reaction (PCR)-amplified DNA. Thus, these GA patients are compound heterozygotes with respect to mutations in the OAT gene that result in inactivation of OAT.  相似文献   

19.
To identify novel allelic variations in key genes of wheat quality, the present study used the targeting induced local lesions in genomes platform to detect point mutations in target genes. The wheat variety Longfumai 17 was treated by the mutagen ethyl methanesulfonate to produce a bulk M2 generation, and the population included 1122 plants. A total length of 3906.80 kb nucleotides was analyzed, and the average mutation density was 1/244.17 kb. The identified mutations included G>A substitutions (43.75%), C>T substitutions (31.25%), A insertions (12.50%), T insertions (6.25%), and deletions (6.25%). These point mutations led to changes in amino acids and thus the encoded protein sequences, ultimately producing 18.75% of missense mutations, 12.50% of frame shift mutations, 6.25% of nonsense mutations, 25.00% of silent mutations and 37.50% of non-coding region mutations. In the kernel hardness gene Pinb and 3 starch synthesis genes waxy, Agp2 and SSIIa-A, we detected 16 different point mutations in 25 mutant lines. The Pinb gene harbored two missense mutations and a nonsense mutation; the C>T missense mutation resulted in a novel allele, this novel allele and the nonsense mutation alerted protein 3D structure; the waxy gene presented missense and frame shift mutations; the Agp2 gene carried a missense mutation; the SSIIa-A incurred a missense mutation and a frame shift mutation that resulted in premature protein termination. All the frame shift mutations, nonsense mutations and the Pinb novel allele resulted in allelic variation of their corresponding genes, which in turn affected their gene functions. The identified mutant lines can be used as intermediate materials in wheat quality improvement schemes.  相似文献   

20.
To obtain more information of the functional domains of the NPC1 protein, the mutational spectrum and the level of immunoreactive protein were investigated in skin fibroblasts from 30 unrelated patients with Niemann-Pick C1 disease. Nine of them were characterized by mild alterations of cellular cholesterol transport (the "variant" biochemical phenotype). The mutations showed a wide distribution to nearly all NPC1 domains, with a cluster (11/32) in a conserved NPC1 cysteine-rich luminal loop. Homozygous mutations in 14 patients and a phenotypically defined allele, combined with a new mutation, in a further 10 patients allowed genotype/phenotype correlations. Premature-termination-codon mutations, the three missense mutations in the sterol-sensing domain (SSD), and A1054T in the cysteine-rich luminal loop all occurred in patients with infantile neurological onset and "classic" (severe) cholesterol-trafficking alterations. By western blot, NPC1 protein was undetectable in the SSD missense mutations studied (L724P and Q775P) and essentially was absent in the A1054T missense allele. Our results thus enhance the functional significance of the SSD and demonstrate a correlation between the absence of NPC1 protein and the most severe neurological form. In the remaining missense mutations studied, corresponding to other disease presentations (including two adults with nonneurological disease), NPC1 protein was present in significant amounts of normal size, without clear-cut correlation with either the clinical phenotype or the "classic"/"variant" biochemical phenotype. Missense mutations in the cysteine-rich luminal loop resulted in a wide array of clinical and biochemical phenotypes. Remarkably, all five mutant alleles (I943M, V950M, G986S, G992R, and the recurrent P1007A) definitively correlated with the "variant" phenotype clustered within this loop, providing new insight on the functional complexity of the latter domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号