首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Park E  Suh H  Kim C  Park S  Dorsett D  Yim J 《IUBMB life》2007,59(12):781-790
A P element enhancer trap screen was conducted to identify genes involved in dorsal-ventral boundary formation in Drosophila. The son of Notch (son) gene was identified by the son(2205) enhancer trap insertion, which is a partial loss-of-function mutation. Based on son(2205) mutant phenotypes and genetic interactions with Notch and wingless mutations, we conclude that son participates in wing development, and functions in the Notch signaling pathway at the dorsal-ventral boundary in the wing. Notch signaling pathway components activate son enhancer trap expression in wing cells. son enhancer trap expression is regulated positively by wingless, and negatively by cut in boundary cells. Ectopic Son protein induces wingless and cut expression in wing discs. We hypothesize that there is positive feedback regulation of son by wingless, and negative regulation by cut at the dorsal-ventral boundary during wing development.  相似文献   

2.
Milán M  Weihe U  Pérez L  Cohen SM 《Cell》2001,106(6):785-794
Mechanisms to segregate cell populations play important roles in tissue patterning during animal development. Rhombomeres and compartments in the ectoderm and imaginal discs of Drosophila are examples in which initially homogenous populations of cells come to be separated by boundaries of lineage restriction. Boundary formation depends in part on signaling between the distinctly specified cell populations that comprise compartments and in part on formation of affinity boundaries that prevent intermingling of these cell populations. Here, we present evidence that two transmembrane proteins with leucine-rich repeats, known as Capricious and Tartan, contribute to formation of the affinity boundary between dorsal and ventral compartments during Drosophila wing development.  相似文献   

3.
4.
5.
González A  Chaouiya C  Thieffry D 《Genetics》2006,174(3):1625-1634
The larval development of the Drosophila melanogaster wings is organized by the protein Wingless, which is secreted by cells adjacent to the dorsal-ventral (DV) boundary. Two signaling processes acting between the second and early third instars and between the mid- and late third instar control the expression of Wingless in these boundary cells. Here, we integrate both signaling processes into a logical multivalued model encompassing four cells, i.e., a boundary and a flanking cell at each side of the boundary. Computer simulations of this model enable a qualitative reproduction of the main wild-type and mutant phenotypes described in the experimental literature. During the first signaling process, Notch becomes activated by the first signaling process in an Apterous-dependent manner. In silico perturbation experiments show that this early activation of Notch is unstable in the absence of Apterous. However, during the second signaling process, the Notch pattern becomes consolidated, and thus independent of Apterous, through activation of the paracrine positive feedback circuit of Wingless. Consequently, we propose that appropriate delays for Apterous inactivation and Wingless induction by Notch are crucial to maintain the wild-type expression at the dorsal-ventral boundary. Finally, another mutant simulation shows that cut expression might be shifted to late larval stages because of a potential interference with the early signaling process.  相似文献   

6.
7.
8.
Subdivision of proliferating tissues into adjacent compartments that do not mix plays a key role in animal development. The Actin cytoskeleton has recently been shown to mediate cell sorting at compartment boundaries, and reduced cell proliferation in boundary cells has been proposed as a way of stabilizing compartment boundaries. Cell interactions mediated by the receptor Notch have been implicated in the specification of compartment boundaries in vertebrates and in Drosophila, but the molecular effectors remain largely unidentified. Here, we present evidence that Notch mediates boundary formation in the Drosophila wing in part through repression of bantam miRNA. bantam induces cell proliferation and we have identified the Actin regulator Enabled as a new target of bantam. Increased levels of Enabled and reduced proliferation rates contribute to the maintenance of the dorsal-ventral affinity boundary. The activity of Notch also defines, through the homeobox-containing gene cut, a distinct population of boundary cells at the dorsal-ventral (DV) interface that helps to segregate boundary from non-boundary cells and contributes to the maintenance of the DV affinity boundary.  相似文献   

9.
BACKGROUND: Secreted signaling proteins of the Wingless (Wg)/Wnt, Hedgehog and bone morphogenetic protein (BMP)/Decapentaplegic (Dpp) families function as morphogens to control growth and pattern formation during development. Although these proteins have been shown to act directly on distant cells in the developing limbs of the fruit fly Drosophila, little is known about how ligand gradients form in vivo. Wg protein is found in vesicles in Wg-responsive cells in the embryo and imaginal discs. It has been proposed that Wg may be transported by a vesicle-mediated mechanism. RESULTS: A novel method to visualize extracellular Wg protein was used to show that Wg forms an unstable gradient on the basolateral surface of the wing imaginal disc epithelium. Wg movement did not require internalization by dynamin-mediated endocytosis. Dynamin activity was, however, required for Wg secretion. By reversibly blocking Wg secretion, we found that Wg moves rapidly to form a long-range extracellular gradient. CONCLUSIONS: The Wg morphogen gradient forms by rapid movement of ligand through the extracellular space, and depends on continuous secretion and rapid turnover. Endocytosis is not required for Wg movement, but contributes to shaping the gradient by removing extracellular Wg. We propose that the extracellular Wg gradient forms by diffusion.  相似文献   

10.
A gene regulatory network orchestrates neural crest formation   总被引:2,自引:0,他引:2  
The neural crest is a multipotent, migratory cell population that is unique to vertebrate embryos and gives rise to many derivatives, ranging from the peripheral nervous system to the craniofacial skeleton and pigment cells. A multimodule gene regulatory network mediates the complex process of neural crest formation, which involves the early induction and maintenance of the precursor pool, emigration of the neural crest progenitors from the neural tube via an epithelial to mesenchymal transition, migration of progenitor cells along distinct pathways and overt differentiation into diverse cell types. Here, we review our current understanding of these processes and discuss the molecular players that are involved in the neural crest gene regulatory network.  相似文献   

11.
Teleman AA  Cohen SM 《Cell》2000,103(6):971-980
The secreted signaling protein Dpp acts as a morphogen to pattern the anterior-posterior axis of the Drosophila wing. Dpp activity is required in all cells of the developing wing imaginal disc, but the ligand gradient that supports this activity has not been characterized. Here we make use of a biologically active form of Dpp tagged with GFP to examine the ligand gradient. Dpp-GFP forms an unstable extracellular gradient that spreads rapidly in the wing disc. The activity gradient visualized by MAD phosphorylation differs in shape from the ligand gradient. The pMAD gradient adjusted to compartment size when this was experimentally altered. These observations suggest that the Dpp activity gradient may be shaped at the level of receptor activation.  相似文献   

12.
Miniature is an extracellular zona pellucida domain-containing protein, required for flattening of pupal wing epithelia in Drosophila. Here, we show that Miniature also plays an important role in the post-eclosion wing maturation processes triggered by the neurohormone bursicon. Wing expansion and epithelial apoptosis are drastically delayed in miniature loss-of-function mutants, and sped up upon overexpression of the protein in wings. Miniature acts upstream from the heterotrimeric Gs protein transducing the bursicon signal in wing epithelia. We propose that Miniature interacts with bursicon and regulates its diffusion through or stability within the wing tissue.  相似文献   

13.
卷翅是果蝇遗传学上最常用的标记之一,但卷翅形成的具体机制还不清楚.过去的研究发现,理化刺激影响果蝇卷翅的形成.我们最近研究发现,H_2O_2处理不仅会影响果蝇的羽化率,还会使其出现卷翅现象.本研究通过改变H_2O_2浓度、果蝇培养温度和H_2O_2处理时间,探讨影响黑腹果蝇卷翅形成的具体因素,并对其超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)活力进行检测,探讨H_2O_2对果蝇抗氧化能力的影响.结果表明:果蝇的羽化率与H_2O_2浓度成反比.温度、H_2O_2浓度和H_2O_2处理时间的改变均会影响果蝇翅的卷曲程度和卷翅果蝇所占的比例.其中white基因突变果蝇对这3种条件反应最明显,mini-white(white基因回复突变)果蝇却可以拯救该表型,它的反应与野生型OR相似.H_2O_2对含Cy基因的果蝇卷翅的形成也有一定的影响,可以加大果蝇翅的卷曲程度.对SOD、CAT和GSH-PX活力检测发现,H_2O_2处理会使果蝇的抗氧化能力降低.实时荧光定量PCR检测发现,H_2O_2处理会导致果蝇基因表达量发生改变.黑腹果蝇卷翅形成是一个十分复杂的过程,H_2O_2可能作为某种信号分子或是间接影响某种因子参与黑腹果蝇的卷翅形成过程.该卷翅形成过程可能与Cy基因导致的果蝇卷翅过程是同一个信号途径,两者也可能是通过不同的模式进行调控的.  相似文献   

14.
Robustness of a gene regulatory circuit.   总被引:5,自引:0,他引:5       下载免费PDF全文
J W Little  D P Shepley    D W Wert 《The EMBO journal》1999,18(15):4299-4307
Complex interacting systems exhibit system behavior that is often not predictable from the properties of the component parts. We have tested a particular system property, that of robustness. The behavior of a system is termed robust if that behavior is qualitatively normal in the face of substantial changes to the system components. Here we test whether the behavior of the phage lambda gene regulatory circuitry is robust. This circuitry can exist in two alternative patterns of gene expression, and can switch from one regulatory state to the other. These states are stabilized by the action at the O(R) region of two regulatory proteins, CI and Cro, which bind with differential affinities to the O(R)1 and O(R)3 sites, such that each represses the synthesis of the other one. In this work, this pattern of binding was altered by making three mutant phages in which O(R)1 and O(R)3 were identical. These variants had the same qualitative in vivo patterns of gene expression as wild type. We conclude that the behavior of the lambda circuitry is highly robust. Based on these and other results, we propose a two-step pathway, in which robustness plays a key role, for evolution of complex regulatory circuitry.  相似文献   

15.
In Drosophila embryos, segment boundaries form at the posterior edge of each stripe of engrailed expression. We have used an HRP-CD2 transgene to follow by transmission electron microscopy the cell shape changes that accompany boundary formation. The first change is a loosening of cell contact at the apical side of cells on either side of the incipient boundary. Then, the engrailed-expressing cells flanking the boundary undergo apical constriction, move inwards and adopt a bottle morphology. Eventually, grooves regress, first on the ventral side, then laterally. We noted that groove formation and regression are contemporaneous with germ band retraction and shortening, respectively, suggesting that these rearrangements could also contribute to groove morphology. The cellular changes accompanying groove formation require that Hedgehog signalling be activated, and, as a result, a target of Ci expressed, at the posterior of each boundary (obvious targets like stripe and rhomboid appear not to be involved). In addition, Engrailed must be expressed at the anterior side of each boundary, even if Hedgehog signalling is artificially maintained. Thus, there are distinct genetic requirements on either side of the boundary. In addition, Wingless signalling at the anterior of the domains of engrailed (and hedgehog) expression represses groove formation and thus ensures that segment boundaries form only at the posterior.  相似文献   

16.
Decapentaplegic (Dpp), a Drosophila TGF beta/bone morphogenetic protein homolog, functions as a morphogen to specify cell fate along the anteroposterior axis of the wing. Dpp is a heparin-binding protein and Dpp signal transduction is potentiated by Dally, a cell-surface heparan sulfate proteoglycan, during assembly of several adult tissues. However, the molecular mechanism by which the Dpp morphogen gradient is established and maintained is poorly understood. We show evidence that Dally regulates both cellular responses to Dpp and the distribution of Dpp morphogen in tissues. In the developing wing, dally expression in the wing disc is controlled by the same molecular pathways that regulate expression of thick veins, which encodes a Dpp type I receptor. Elevated levels of Dally increase the sensitivity of cells to Dpp in a cell autonomous fashion. In addition, dally affects the shape of the Dpp ligand gradient as well as its activity gradient. We propose that Dally serves as a co-receptor for Dpp and contributes to shaping the Dpp morphogen gradient.  相似文献   

17.
卷翅是果蝇遗传学上最常用的标记之一,但卷翅形成的具体机制还不清楚.过去的研究发现,理化刺激影响果蝇卷翅的形成.我们最近研究发现,H2O2处理不仅会影响果蝇的羽化率,还会使其出现卷翅现象.本研究通过改变H2O2浓度、果蝇培养温度和H2O2处理时间,探讨影响黑腹果蝇卷翅形成的具体因素,并对其超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)活力进行检测,探讨H2O2对果蝇抗氧化能力的影响.结果表明: 果蝇的羽化率与H2O2浓度成反比.温度、H2O2浓度和H2O2处理时间的改变均会影响果蝇翅的卷曲程度和卷翅果蝇所占的比例.其中white基因突变果蝇对这3种条件反应最明显,mini-white(white基因回复突变)果蝇却可以拯救该表型,它的反应与野生型OR相似.H2O2对含Cy基因的果蝇卷翅的形成也有一定的影响,可以加大果蝇翅的卷曲程度.对SOD、CAT和GSH-PX活力检测发现,H2O2处理会使果蝇的抗氧化能力降低.实时荧光定量PCR检测发现,H2O2处理会导致果蝇基因表达量发生改变.黑腹果蝇卷翅形成是一个十分复杂的过程,H2O2可能作为某种信号分子或是间接影响某种因子参与黑腹果蝇的卷翅形成过程.该卷翅形成过程可能与Cy基因导致的果蝇卷翅过程是同一个信号途径,两者也可能是通过不同的模式进行调控的.  相似文献   

18.
Robustness to perturbation is an important characteristic of genetic regulatory systems, but the relationship between robustness and model dynamics has not been clearly quantified. We propose a method for quantifying both robustness and dynamics in terms of state-space structures, for Boolean models of genetic regulatory systems. By investigating existing models of the Drosophila melanogaster segment polarity network and the Saccharomyces cerevisiae cell-cycle network, we show that the structure of attractor basins can yield insight into the underlying decision making required of the system, and also the way in which the system maximises its robustness. In particular, gene networks implementing decisions based on a few genes have simple state-space structures, and their attractors are robust by virtue of their simplicity. Gene networks with decisions that involve many interacting genes have correspondingly more complicated state-space structures, and robustness cannot be achieved through the structure of the attractor basins, but is achieved by larger attractor basins that dominate the state space. These different types of robustness are demonstrated by the two models: the D. melanogaster segment polarity network is robust due to simple attractor basins that implement decisions based on spatial signals; the S. cerevisiae cell-cycle network has a complicated state-space structure, and is robust only due to a giant attractor basin that dominates the state space.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号