首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
P Sirois  S Roy  P Borgeat 《Prostaglandins》1983,26(1):91-101
The novel metabolites of arachidonic acid, leukotriene (LT) A4, B4, C4, D4 and E4 have potent myotropic activity on guinea-pig lung parenchymal strip in vitro. The receptors responsible for their action were characterized using desensitization experiments and the selective SRS-A antagonist, FPL-55712. During the continuous infusion of LTB4, the tissues became desensitized to LTB4 but were still responsive to histamine, LTA4, LTC4, LTD4 and LTE4. When LTD4 was infused continuously, the lung strips contracted to LTB4 and histamine but were no longer responsive to LTA4, LTC4, LTD4 and LTE4. Furthermore, FPL-55712 (10 ng ml-1 - 10 ug ml-1) produced dose-dependent inhibitions of LTA4, LTC4, LTD4 and LTE4 without inhibiting the contraction to LTB4 and histamine. On the basis of these results, it appears that the guinea-pig lung parenchyma may have one type of receptor for LTB4 and another for LTD4; LTA4, LTC4 and LTE4 probably act on the LTD4 receptor.  相似文献   

3.
Exaggerated levels of IL-13 and leukotriene (LT) pathway activation frequently coexist at sites of Th2 inflammation and in tissue fibrotic responses. However, the relationship(s) between the IL-13 and LTs in these responses have not been defined. We hypothesized that the 5-lipoxygenase (5-LO) pathway of LT metabolism plays an important role in the pathogenesis of IL-13-induced chronic inflammation and remodeling. To test this hypothesis, we evaluated the effects of IL-13 on components of the 5-LO metabolic and activation pathways. We also compared the effects of transgenic IL-13 in C57BL/6 mice with wild-type and null 5-LO genetic loci. These studies demonstrate that IL-13 increases the levels of mRNA encoding cytosolic phospholipase A(2), LTA(4) hydrolase, and 5-LO-activating protein without altering the expression of 5-LO, LTC(4) synthase, LTB(4) receptors 1 and 2, and cysteinyl-LT receptors 1 and 2. They also demonstrate that this activation is associated with the enhanced accumulation of LTB(4) but not of cysteinyl-LTs. Furthermore, they demonstrate that this stimulation plays a critical role in the pathogenesis of IL-13-induced inflammation, tissue fibrosis, and respiratory failure-induced death while inhibiting alveolar remodeling. Lastly, mechanistic insights are provided by demonstrating that IL-13-induced 5-LO activation is required for optimal stimulation and activation of TGF-beta(1) and the inhibition of matrix metalloproteinase-12. When viewed in combination, these studies demonstrate that 5-LO plays an important role in IL-13-induced inflammation and remodeling.  相似文献   

4.
Influence of hypoxia on 5-lipoxygenase pathway in rat alveolar macrophages   总被引:1,自引:0,他引:1  
The effect of hypoxia was studied on the ionophore A23187-induced leukotriene production by rat alveolar macrophages. The production of LTB4 and LTC4 decreased with reducing oxygenation without change of cell viability. The synthesis of 5-HETE increased during hypoxia and the total production of LTB4, LTC4 and 5-HETE, the major metabolites of the 5-lipoxygenase pathway in rat alveolar macrophages, was equal during normoxia and hypoxia. Arachidonate release and LTA4-converting into LTB4 and LTC4 was unaffected by hypoxia. LTB4- and LTC4-degradating activities were not affected by hypoxia. These results suggest that LTA4 synthase reaction of leukotrienes biosynthesis might be suppressed by hypoxia.  相似文献   

5.
The synthesis and metabolism of leukotrienes (LTs) by endothelial cells was investigated using reverse-phase high-performance liquid chromatography. Cells were incubated with [14C]arachidonic acid. LTA4 or [3H]LTA4 and stimulated with ionophore A23187. The cells did not synthesize leukotrienes from [14C]arachidonic acid. LTA4 and [3H]LTA4 were converted to LTC4, LTD4, LTE4 and 5,12-diHETE. Endothelial cells metabolized [3H]LTC4 to [3H]LTD4 and [3H]LTE4. The metabolism of [3H]LTC4 was inhibited by L-serine-borate complex, phenobarbital and acivicin in a concentration-related manner, with maximal inhibition occurring at a concentration of 0.1 M, 0.01 M and 0.01 M, respectively. LTC4, LTB4 and LTD4 stimulated the synthesis of prostacyclin, measured by radioimmunoassays as 6-keto-PGF1 alpha. The stimulation by LTC4 was greater than that by LTD4 or LTB4. LTE4, 14,15-LTC4 and 14,15-LTD4 failed to stimulate the synthesis of prostacyclin. LTD4 and LTB4 also stimulated the release of PGE2, whereas LTC4 did not. Serine-borate and phenobarbital inhibited LTC4-stimulated synthesis of prostacyclin in a concentration-related manner. They also inhibited the release of prostacyclin by histamine, A23187 and arachidonic acid. Acivicin had no effect on the release of prostacyclin by LTC4, histamine or A23187. Furthermore, FPL-55712, an LT receptor antagonist, inhibited LTC4-stimulated prostacyclin synthesis but had no effect on histamine-stimulated release of prostacyclin or PGE2. Indomethacin inhibited both LTC4- and histamine-stimulated release. The results show that (a) endothelial cells metabolize LTA4, LTC4 and LTD4 but do not synthesize LTs from arachidonic acid; (b) LTC4 act directly at the leukotriene receptor to stimulation prostacyclin synthesis; (c) the presence of the glutathione moiety at the C-6 position of the eicosatetraenoic acid skeleton is necessary for leukotriene stimulation of prostacyclin release; and (d) the metabolism of LTC4 to LTD4 and LTE4 does not appear to alter the ability of LTC4 to stimulate the synthesis of PGI2.  相似文献   

6.
The data on the pharmacology of leukotrienes showed that LTA4, LTC4 and LTD4 were equipotent on the guinea-pig lung parenchyma whereas LTB4 was slightly less active. However, on the trachea, the myotropic activity of LTC4 and LTD4 was equivalent and higher than LTB4 and LTA4. The potency of these compounds was also different on the ileum where LTD4 was more active than LTC4; at the concentration used, LTA4 and LTB4 were inactive on this tissue. These results suggested that the transformation of leukotrienes by the smooth muscle preparations was a prerequisite for its biological activity. To verify this hypothesis, LTA4 (100 ng) was incubated for 10 min. with 20,000 g supernatants of homogenates of guinea-pig lung parenchyma, trachea and ileum; the metabolites were analysed by bioassay using strips of guinea-pig ileum and lung parenchyma in a cascade superfusion system and by RP-HPLC. Homogenates of lung parenchyma rapidly transformed LTA4 to LTB4, LTC4, LTD4 and LTE4, which is in agreement with the myotropic potency of these leukotrienes on the lung parenchymal strip. Conversely, incubation of LTA4 with homogenates of guinea-pig ileum showed the formation of LTB4 and its isomers which are inactive on this preparation. Similarly, incubation of homogenates of trachea with LTA4 led to the formation of LTB4; this finding is again in agreement with the potency of these two leukotrienes on the trachea. Our results suggest that the myotropic activity and potency of LTA4 is related to the tissue levels of enzymes which catalyse its transformation.  相似文献   

7.
LY 255283 [(1-(5-ethyl-2-hydroxy-4-(6-methyl-6-)1H-tetrazol-5-yl)-heptyloxy) phenyl)ethanone], a specific leukotriene B(4) (LTB(4)) receptor antagonist, inhibited the production of LTB(4) in human peripheral blood polymorphonuclear leukocytes (PMNL) and in monocytes activated by calcium ionophore A23187. In human monocytes activated by ionophore it inhibited also the production of thromboxane B(2) (TXB(2)). The effect of LY 255283 on 5-lipoxygenase (5-LO) and LTA(4) hydrolase activities which catalyse the production of LTB(4) and LTA(4) has not been studied yet. It is thought that LY 255283 may inhibit the production of LTB(4) and TXA(2) by antagonising the effect of ionophore-induced LTB(4) on 5-lipoxygenase and cyclooxygenase in human peripheral blood PMNL and monocytes.  相似文献   

8.
The epoxide 5(S) trans-5,6 oxido, 7,9 trans-11,14,17 cis eicosatetraenoic acid (leukotriene A5) was chemically synthesized and demonstrated to be both a substrate and an inhibitor of partially purified rat and human LTA4 hydrolase. Both rat and human LTA4 hydrolase utilized leukotriene A5 less effectively as a substrate than leukotriene A4. Incubation of leukotriene A5 (10 microM) or leukotriene A4 (10 microM) with rat neutrophils demonstrated formation of 123 pmol LTB5/min/10(7) cells and 408 pmol LTB4/min/10(7) cells respectively. Purified rat neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 22 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 50 nmol LTB4/min/mg protein. Human neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 24 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 52 nmol LTB4/min/mg protein. Leukotriene A5 was an inhibitor of the formation of leukotriene B4 from leukotriene A4 by both the rat and human neutrophil LTA4 hydrolase. Excess leukotriene A5 prevented covalent coupling of [3H] leukotriene A4 to LTA4 hydrolase suggesting inhibition may involve covalent coupling of leukotriene A5 to the LTA4 hydrolase.  相似文献   

9.
Arachidonic acid metabolism by 5-lipoxygenase leads to production of the potent inflammatory mediators, leukotriene (LT) B4 and the cysteinyl LT. Relative synthesis of these subclasses of LT, each with different proinflammatory properties, depends on the expression and subsequent activity of LTA4 hydrolase and LTC4 synthase, respectively. LTA4 hydrolase differs from other proteins required for LT synthesis because it is expressed ubiquitously. Also, in vitro studies indicate that it possesses an aminopeptidase activity. Introduction of cysteinyl LT and LTB4 into animals has shown LTB4 is a potent chemoattractant, while the cysteinyl LT alter vascular permeability and smooth muscle tone. It has been impossible to determine the relative contributions of these two classes of LT to inflammatory responses in vivo or to define possible synergy resulting from the synthesis of both classes of mediators. To address this question, we have generated LTA4 hydrolase-deficient mice. These mice develop normally and are healthy. Using these animals, we show that LTA4 hydrolase is required for the production of LTB4 in an in vivo inflammatory response. We show that LTB4 is responsible for the characteristic influx of neutrophils accompanying topical arachidonic acid and that it contributes to the vascular changes seen in this model. In contrast, LTB4 influences only the cellular component of zymosan A-induced peritonitis. Furthermore, LTA4 hydrolase-deficient mice are resistant to platelet-activating factor, identifying LTB4 as one mediator of the physiological changes seen in systemic shock. We do not identify an in vivo role for the aminopeptidase activity of LTA4 hydrolase.  相似文献   

10.
Leukotriene A4 hydrolase activity of human airway epithelial cells   总被引:2,自引:0,他引:2  
Human tracheal epithelial cells were incubated with LTA4 and metabolic products were identified in extracted supernatants by high pressure liquid chromatography, ultraviolet spectroscopy, and gas chromatography-mass spectrometry. In the presence of epithelial cells, LTA4 was converted to LTB4, but not to LTC4 or LTD4. Maximum LTB4 was released at an LTA4 concentration of 3 microM and had occurred by 30 min. LTB4 release was increased in the presence of albumin, but was not affected by extracellular calcium or A23187. This LTA4 hydrolase activity had a slower time course and could not be clearly inactivated by repeated exposure to substrate as is the case for previously described LTA4 hydrolase enzymes. This hydrolase appears to have novel biochemical characteristics.  相似文献   

11.
Black cumin seed, Nigella sativa L., and its oils have traditionally been used for the treatment of asthma and other inflammatory diseases. Thymoquinone (TQ) has been proposed to be one of the major active components of the drug. Since leukotrienes (LTs) are important mediators in asthma and inflammatory processes, the effects of TQ on leukotriene formation were studied in human blood cells. TQ provoked a significant concentration-dependent inhibition of both LTC4 and LTB4 formation from endogenous substrate in human granulocyte suspensions with IC50 values of 1.8 and 2.3 microM, respectively, at 15 min. Major inhibitory effect was on the 5-lipoxygenase activity (IC50 3 microM) as evidenced by suppressed conversion of exogenous arachidonic acid into 5-hydroxy eicosatetraenoic acid (5HETE) in sonicated polymorphonuclear cell suspensions. In addition, TQ induced a significant inhibition of LTC4 synthase activity, with an IC50 of 10 microM, as judged by suppressed transformation of exogenous LTA4 into LTC4. In contrast, the drug was without any inhibitory effect on LTA4 hydrolase activity. When exogenous LTA4 was added to intact or sonicated platelet suspensions preincubated with TQ, a similar inhibition of LTC4 synthase activity was observed as in human granulocyte suspensions. The unselective protein kinase inhibitor, staurosporine failed to prevent inhibition of LTC4 synthase activity induced by TQ. The findings demonstrate that TQ potently inhibits the formation of leukotrienes in human blood cells. The inhibitory effect was dose- and time-dependent and was exerted on both 5-lipoxygenase and LTC4 synthase activity.  相似文献   

12.
Leukotriene B(4) (LTB(4)) biosynthesis by polymorphonuclear leukocytes (PMNs) is an important factor of inflammatory responses. PMNs also release LTA(4), an unstable intermediate that can be taken up by neighboring cells and metabolized into LTC(4). Most studies of LT synthesis have been carried out using human PMNs, but very little information is available about mouse PMNs. Mouse bone marrow PMNs were found to synthesize eicosanoids upon stimulation with A23187, fMLP, or zymosan. The major eicosanoids produced are LTB(4) and 5-hydroxyeicosatetraenoic acid, with some nonenzymatic products of LTA(4) hydrolysis. No cysteinyl leukotrienes were produced, in contrast to what was observed with human blood neutrophil preparations. Human megakaryoblast-like MEG-01 cells synthesized thromboxane B(2) and prostaglandin E(2) in response to A23187 but produced no 5-lipoxygenase (5-LO)-derived eicosanoids. When mouse bone marrow cells (mBMCs) and MEG-01 cells were stimulated during coincubation, LTC(4) and LTD(4) were produced. Mouse peritoneal macrophages from 5-LO-deficient mice were able to synthesize LTC(4) when incubated with mBMCs from wild-type mice, demonstrating transcellular exchange of LTA(4) from mBMCs into murine peritoneal macrophages. These data demonstrate that murine bone marrow PMNs are a valid model for the study of LT biosynthesis, which now offers the possibility to investigate specific biochemical pathways through the use of transgenic mice.  相似文献   

13.
Alterations of leukotriene (LT) productivity in peritoneal macrophages (PM) from untreated rats (control) as well as from rats treated i.p. with thioglycollate broth (TG) were investigated on days 3, 7 and 14 after TG administration. The resident PM from the untreated rats produced mainly LTB4 and 5-HETE with small amounts of 12-HETE and LTD4 with only a trace of LTC4 when stimulated with the calcium ionophore A23187. The PM elicited from rats on days 3 and 7 produced more LTC4 than did the resident PM but fewer other lipoxygenase metabolites. On day 14, however, the elicited PM resembled the resident PM in terms of lipoxygenase metabolite production. Similar results were achieved in the presence of arachidonic acid and A23187. A decrease in lipoxygenase metabolism in the elicited PM was also suggested by using opsonized zymosan. Catabolism studies indicated a reduction in r-glutamyl transpeptidase activity in the elicited PM and suggested a reduction in catabolism for LTB4 in the former cells. The authors conclude that the TG-elicited PM generate fewer lipoxygenase metabolites than the resident PM following stimulation, but show a preferential conversion of LTA4 to sulfidopeptide LTs rather than to LTB4. The elicited PM also show a reduced catabolism for LTC4 and LTB4.  相似文献   

14.
Peritoneal macrophages (PM), obtained from 39 healthy women with normal laparoscopy findings, were stimulated with the ionophore A23187 or/and arachidonic acid (AA) both in adherence and in suspension. AA lipoxygenase metabolites were determined by reversed-phase HPLC. The major metabolites identified were 5-hydroxyeicosatetraenoic acid (5-HETE), leukotriene (LT)B4 and LTC4. The 20-hydroxy-LTB4, 20-carboxy-LTB4, and 15-HETE were not detected. Incubations of adherent PM with 2 microM A23187 induced the formation of LTB4, 110 +/- 19 pmol/10(6) cells, 5-HETE, 264 +/- 53 pmol/10(6) cells and LTC4, 192 +/- 37 pmol/10(6) cells. When incubated with 30 microM exogenous AA, adherent PM released similar amounts of 5-HETE (217 +/- 67 pmol/10(6) cells), but sevenfold less LTC4 (27 +/- 12 pmol/10(6) cells) (p less than 0.01). In these conditions LTB4 was not detectable. These results indicate that efficient LT synthesis in PM requires activation of the 5-lipoxygenase/LTA4 synthase, as demonstrated previously for blood phagocytes. When stimulated with ionophore, suspensions of Ficoll-Paque-purified PM produced the same lipoxygenase metabolites. The kinetics of accumulation of the 5-lipoxygenase/LTA4 synthase products in A23187-stimulated adherent cells varied for the various metabolites. LTB4 reached a plateau by 5 min, whereas LTC4 levels increased up to 60 min, the longest incubation time studied. Levels of 5-HETE were maximal at 5 min, and then slowly decreased with time. Thus, normal PM, in suspension or adherence, have the capacity to produce significant amounts of 5-HETE, LTB4, and LTC4. The profile of lipoxygenase products formed by the PM and the reactivity of this cell to AA and ionophore A23187 are similar to those of the human blood monocyte, but different from those of the human alveolar macrophage.  相似文献   

15.
In this study we report the in vitro inhibition of leukotriene synthesis in calcium ionophore (A23187)-stimulated, intact human blood neutrophils by AHR-5333. The results showed that AHR-5333 inhibits 5-HETE, LTB4 and LTC4 synthesis with IC50 values of 13.9, 13.7 and 6.9 microM, respectively. Further examination of the effect of AHR-5333 on individual reactions of the 5-lipoxygenase pathway (i.e. conversion of LTA4 to LTB4, LTA4 to LTC4, and arachidonic acid to 5-HETE) showed that this agent was not inhibitory to LTA4 epoxyhydrolase and glutathione-S-transferase activity in neutrophil homogenates. However, conversion of arachidonic acid (30 microM) to 5-HETE was half maximally inhibited by 20 microM AHR-5333 in the cell-free system. The inhibition of LTB4 and LTC4 formation in intact neutrophils by AHR-5333 appears to be entirely due to a selective inhibition of 5-lipoxygenase activity and an impaired formation of LTA4, which serves as substrate for LTA4 epoxyhydrolase and glutathione-S-transferase. AHR-5333 did not affect the transformation of exogenous arachidonic acid to thromboxane B2, HHT and 12-HETE in preparations of washed human platelets, indicating that this agent has no effect on platelet prostaglandin H synthase, thromboxane synthase and 12-lipoxygenase activity. The lack of inhibitory activity of AHR-5333 on prostaglandin H synthase activity was confirmed with microsomal preparations of sheep vesicular glands.  相似文献   

16.
Leukotriene (LT) synthesis and metabolism were studied in porcine aortic endothelial cells. Leukotrienes were identified by combinations of guinea pig lung parenchymal strip bioassay, radioimmunoassay, and UV spectrophotometry with high performance liquid chromatography. Endothelial cells stimulated with the calcium ionophore, A23187, were unable to convert arachidonic acid to detectable levels of LTA4-derived products including the biologically active metabolites, LTB4 or LTC4. However, these cells readily converted exogenous LTA4 to the potent slow-reacting substance, LTC4. Smaller quantities of 11-trans-LTC4 and LTD4 were also observed. LTB4 was not detectable in these incubations nor was LTB4 metabolism observed. The possible intercellular transfer of LTA4 between polymorphonuclear leukocytes (PMNL) and endothelial cells was tested since PMNL release LTA4 when stimulated and have significant contact with endothelium. When A23187-stimulated neutrophils were coincubated with endothelial cells, a significant increase in LTC4 levels was detected over PMNL alone. LTC4 is formed by the enzymatic conjugation of glutathione (GSH) with LTA4. Therefore in some experiments, endothelial cells were prelabeled with [35S]cysteine to allow intracellular synthesis of [35S]GSH. When unlabeled PMNL were added, as a source of LTA4 to the prelabeled endothelial cells, substantial levels of [35S] LTC4 were recovered. The data indicate that endothelial cells synthesize LTC4 from LTA4. They also demonstrate a specific PMNL-endothelial cell interaction in which endothelial cell LTC4 synthesis results from the intercellular transfer of LTA4 produced by PMNL.  相似文献   

17.
(5,6)-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acids [5,6)-DiHETEs) were synthesized and separated into four pure diastereoisomers. They were tested for comparative binding affinities to leukotriene receptors (LTC4, LTD4, LTB4) in guinea pig lung membranes. Only (5S,6R)-DiHETE was recognized by the LTD4 receptor, the other receptors interacted with neither of the four isomers. (5S,6R)-DiHETE also contracted ileum in vitro and this effect was inhibited by the LTD4 receptor antagonists ICI 198,615 and SKF104,353. These data suggest that the bioproduct (5S,6R)-DiHETE generated by enzymatic conversion of LTA4 could have some LTD4-like activity when produced in large concentrations.  相似文献   

18.
Leukotrienes can be produced by cooperative interactions between cells in which, for example, arachidonate derived from one cell is oxidized to leukotriene A(4) (LTA(4)) by another and this can then be exported for conversion to LTB(4) or cysteinyl leukotrienes (cys-LTs) by yet another. Neutrophils do not contain LTC(4) synthase but are known to cooperate with endothelial cells or platelets (which do have this enzyme) to generate cys-LTs. Stimulation of human neutrophils perfusing isolated rabbit hearts resulted in production of cys-LTs, whereas these were not seen with perfused hearts alone or isolated neutrophils. In addition, the stimulated, neutrophil-perfused hearts generated much greater amounts of total LTA(4) products, suggesting that the hearts were supplying arachidonate to the neutrophils and, in addition, that this externally derived arachidonate was preferentially used for exported LTA(4) that could be metabolized to cys-LTs by the coronary endothelium. Stable isotope-labeled arachidonate and electrospray tandem mass spectrometry were used to differentially follow metabolism of exogenous and endogenous arachidonate. Isolated, adherent neutrophils at low concentrations (to minimize transcellular metabolism between them) were shown to generate higher proportions of nonenzymatic LTA(4) products from exogenous arachidonate (deuterium-labeled) than from endogenous (unlabeled) sources. The endogenous arachidonate, on the other hand, was preferentially used for conversion to LTB(4) by the LTA(4) hydrolase. This result was not because of saturation of the LTA(4) hydrolase, because it occurred at widely differing concentrations of exogenous arachidonate. Finally, in the presence of platelets (which contain LTC(4) synthase), the LTA(4) synthesized from exogenous deuterium-labeled arachidonate was converted to cys-LTs to a greater degree than that from endogenous sources. These experiments suggest that exogenous arachidonate is preferentially converted to LTA(4) for export (not intracellular conversion) and raises the likelihood that there are different intracellular pathways for arachidonate metabolism.  相似文献   

19.
Leukotriene A4 (LTA4) hydrolase catalyzes a rate-limiting final biosynthetic step of leukotriene B4 (LTB4), a potent lipid chemotactic agent and proinflammatory mediator. LTB4 has been implicated in the pathogenesis of various acute and chronic inflammatory diseases, and thus LTA4 hydrolase is regarded as an attractive therapeutic target for anti-inflammation. To facilitate identification and optimization of LTA4 hydrolase inhibitors, a specific and efficient assay to quantify LTB4 is essential. This article describes the development of a novel 384-well homogeneous time-resolved fluorescence assay for LTB4 (LTB4 HTRF assay) and its application to establish an HTRF-based LTA4 hydrolase assay for lead optimization. This LTB4 HTRF assay is based on competitive inhibition and was established by optimizing the reagent concentration, buffer composition, incubation time, and assay miniaturization. The optimized assay is sensitive, selective, and robust, with a Z' factor of 0.89 and a subnanomolar detection limit for LTB4. By coupling this LTB4 HTRF assay to the LTA4 hydrolase reaction, an HTRF-based LTA4 hydrolase assay was established and validated. Using a test set of 16 LTA4 hydrolase inhibitors, a good correlation was found between the IC50 values obtained using LTB4 HTRF with those determined using the LTB enzyme-linked immunoassay (R = 0.84). The HTRF-based LTA4 hydrolase assay was shown to be an efficient and suitable assay for determining compound potency and library screening to guide the development of potent inhibitors of LTA4 hydrolase.  相似文献   

20.
Leukotriene (LT) A4 metabolism was studied in human platelets and endothelial cells, since both cells could be involved in transcellular formation of LTC4. Upon addition of exogenous LTA4, both cells produced LTC4 as a major metabolite at various incubation times, and no LTB4, LTD4, or LTE4 was detected. Kinetic studies revealed a higher apparent Km for LTA4 in endothelial cells as compared to platelets (5.8 microM for human umbilical vein endothelial cells (HUVEC) versus 1.3 microM for platelets); platelets were more efficient in this reaction with a higher Vmax (174 pmol/mg protein/min) versus 15 pmol/mg protein/min in HUVEC. The formation of LTC4 and corresponding kinetic parameters were not modified when platelets or endothelial cells were stimulated by thrombin prior to or simultaneously with the addition of LTA4. In both cells LTC4 synthase activity was not modified by repeated addition of LTA4 showing that it is not a suicide-inactivated enzyme. Furthermore, in platelets and endothelial cells, the enzyme activity was localized in the membrane fraction and was distinct from cytosolic glutathione-S-transferases. Platelet membrane fractions showed apparent Km values of 31 microM and 1.2 mM for LTA4 and GSH, respectively. Inhibition of LTC4 formation from platelets and endothelial cells preparations by S-substituted glutathione derivatives was correlated to the length of the S-alkyl chain. The same substances inhibited cytosolic glutathione-S-transferases with significantly lower IC50, confirming the distinct nature of the two enzymes. These results show that platelets and HUVEC possess similar enzymes for the production of LTC4 from LTA4; however, platelets seem to have a higher efficiency than HUVEC in performing this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号