首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human keratinocytes (KC), when cultured under conditions to remain undifferentiated or to terminally differentiate, changed their cellular distribution of CD1d. As studied by confocal microscopy, undifferentiated KC had a pool of cytoplasmic CD1d, whereas after terminal differentiation, this molecule localized in the cell membrane, which recapitulates CD1d expression in vivo. A comparison of undifferentiated and differentiated cultured KC did not reveal any differences in the association with beta(2)-microglobulin, invariant chain of class II MHC, or patterns of glycosylation, suggesting that these biochemical properties are not regulating the cellular distribution of CD1d. Time-course studies of CD1d gene expression indicated that KC slowly increased gene expression with CaCl(2)-induced terminal differentiation. Increased CD1d gene expression was dependent on ceramide synthesis, because fumonisin B1, a ceramide synthetase inhibitor, blocked the increase in CD1d gene expression during terminal differentiation. Similarly, exogenous ceramide or the ceramidase inhibitor, B13, induced CD1d gene expression by undifferentiated, but not terminally differentiated, KC. A protein kinase C-zeta (PKC-zeta) inhibitor (a pseudosubstrate oligopeptide), but not a PKC-alphabeta inhibitor, significantly decreased CD1d gene expression by undifferentiated or ceramide-stimulated cultured, undifferentiated KC. As expected, downstream signaling events of PKC-zeta (JNK phosphorylation and NF-kappaBeta accumulation in the nucleus) were also attenuated. The calcineurin phosphatase inhibitor cyclosporine A, which blocks KC terminal differentiation, also blocked CD1d gene expression by cultured KC. In conclusion, this novel function of cellular ceramides extends the importance of this class of biologically active lipids beyond that of terminal differentiation and barrier function in normal human skin.  相似文献   

2.
To test the hypothesis that changing neutralizing antibody responses against human immunodeficiency virus type 1 (HIV-1) during chronic infection were a response to emergence of neutralization escape mutants, we cloned expressed and characterized envelope clones from patients in the Multicenter AIDS Cohort Study (MACS). Pseudotyped HIV-1 envelope clones obtained from differing time points were assessed for sensitivity to neutralization by using sera from different times from the same and different patients. Clones from early and late time points during chronic infection had similar neutralization sensitivity, and neutralizing antibody responses cross-reacted with early, late, and heterologous envelopes. The potential for broadly effective HIV-1 immunization is supported.  相似文献   

3.
While it is clear that cancer arises from the accumulation of genetic mutations that endow the malignant cell with the properties of uncontrolled growth and proliferation, the precise combinations of mutations that program human tumor cell growth remain unknown. The study of the transforming proteins derived from DNA tumor viruses in experimental models of transformation has provided fundamental insights into the process of cell transformation. We recently reported that coexpression of the simian virus 40 (SV40) early region (ER), the gene encoding the telomerase catalytic subunit (hTERT), and an oncogenic allele of the H-ras gene in normal human fibroblast, kidney epithelial, and mammary epithelial cells converted these cells to a tumorigenic state. Here we show that the SV40 ER contributes to tumorigenic transformation in the presence of hTERT and oncogenic H-ras by perturbing three intracellular pathways through the actions of the SV40 large T antigen (LT) and the SV40 small t antigen (ST). LT simultaneously disables the retinoblastoma (pRB) and p53 tumor suppressor pathways; however, complete transformation of human cells requires the additional perturbation of protein phosphatase 2A by ST. Expression of ST in this setting stimulates cell proliferation, permits anchorage-independent growth, and confers increased resistance to nutrient deprivation. Taken together, these observations define the elements of the SV40 ER required for the transformation of human cells and begin to delineate a set of intracellular pathways whose disruption, in aggregate, appears to be necessary to generate tumorigenic human cells.  相似文献   

4.
The causative factors leading to breast cancer are largely unknown. Increased incidence of breast cancer following diagnostic or therapeutic radiation suggests that radiation may contribute to mammary oncogenesis. This report describes the in vitro neoplastic transformation of a normal human mammary epithelial cell strain, 76N, by fractionated gamma-irradiation at a clinically used dose (30 Gy). The transformed cells (76R-30) were immortal, had reduced growth factor requirements, and produced tumors in nude mice. Remarkably, the 76R-30 cells completely lacked the p53 tumor suppressor protein. Loss of p53 was due to deletion of the gene on one allele and a 26-bp deletion within the third intron on the second allele which resulted in abnormal splicing out of either the third or fourth exon from the mRNA. PCR with a mutation-specific primer showed that intron 3 mutation was present in irradiated cells before selection for immortal phenotype. 76R-30 cells did not exhibit G1 arrest in response to radiation, indicating a loss of p53-mediated function. Expression of the wild-type p53 gene in 76R-30 cells led to their growth inhibition. Thus, loss of p53 protein appears to have contributed to neoplastic transformation of these cells. This unique model should facilitate analyses of molecular mechanisms of radiation-induced breast cancer and allow identification of p53-regulated cellular genes in breast cells.  相似文献   

5.
Laser scanning confocal microscopy is a powerful technique that can be applied to study the localisation and behaviour of proteins and nucleic acids in many experimental situations. It is a particularly useful technique for the study of virus infections because of the changes that occur in the distribution and amounts of both viral and cellular proteins as infection develops. These changes reflect key stages and important regulatory events that govern the efficiency of infection. Using herpes simplex virus type 1 infected cells as an experimental model, this article provides guidance for users new to confocal microscopy on basic principles and techniques. The emphasis is on recognising, diagnosing and avoiding potential artifacts, and the workflow of the production of high quality, technically correct images.  相似文献   

6.
The work was supported by grants from the Association pour la Recherche sur le Cancer and from the Fondation pour la Recherche Médicale.  相似文献   

7.
During acute and early human immunodeficiency virus type 1 (HIV-1) infection (AEI) more than 50% of CD4+ T cells are preferentially depleted from the gastrointestinal (GI) lamina propria. To better understand the underlying mechanisms, we studied virological and immunological events within the peripheral blood (PB) and GI tract during AEI. A total of 32 AEI subjects and 18 uninfected controls underwent colonic biopsy. HIV-1 viral DNA and RNA levels were quantified in CD4+ T cells derived from the GI tract and PB by using real-time PCR. The phenotype of infected cells was characterized by using combinations of immunohistochemistry and in situ hybridization. Markers of immunological memory, activation, and proliferation were examined by flow cytometry and immunohistochemistry, and the host-derived cytotoxic cellular response was examined by using immunohistochemistry. GI CD4+ T cells harbored, on average, 13-fold higher HIV-1 viral DNA levels and 10-fold higher HIV-1 RNA levels than PB CD4+ T cells during AEI. HIV-1 RNA was detected in both "activated" and "nonactivated" mucosal CD4+ T cells. A significantly higher number of activated and proliferating T cells were detected in the GI tract compared to the PB, and a robust cytotoxic response (HIV-1 specificity not determined) was detected in the GI tract as early as 18 days postinfection. Mucosal CD4+ T-cell depletion is multifactorial. Direct viral infection likely accounts for the earliest loss of CD4+ T cells. Subsequently, ongoing infection of susceptible CD4+ T cells, along with activation-induced cellular death and host cytotoxic cellular response, are responsible for the persistence of the lesion.  相似文献   

8.
Contact hypersensitivity (CHS) is a T cell-mediated, Ag-specific skin inflammation induced by skin exposure to haptens in sensitized individuals. Th1/T cytotoxic 1 cells are effector cells of CHS, whereas Th2/T regulatory CD4(+) T cells have down-regulating properties. We have previously shown that CHS to 2,4-dinitrofluorobenzene is mediated by specific CD8(+) effector cells, whose cytolytic activity is mandatory for induction of skin inflammation. In this study, using immunohistochemistry and RT-PCR analysis, we show that CD8(+) T cells are rapidly recruited into the skin at the site of hapten challenge before the onset of clinical and histological signs of skin inflammation. This early CD8(+) T cell recruitment is concomitant with: 1) transient IFN-gamma mRNA expression suggesting local activation of effector cells; and 2) induction of keratinocyte (KC) apoptosis which gradually increased to a maximum at the peak of the CHS response. Alternatively, skin infiltration of CD4(+) T cells occurred later and coincided with the peak of the CHS reaction and the beginning of the resolution of skin inflammation. Mice deficient in CD8(+) T cells did not develop CHS, whereas mice deficient in CD4(+) T cells developed an enhanced inflammatory response with increased numbers of CD8(+) T cells recruited in the skin associated with massive KC apoptosis. These data show that CHS is due to the early and selective recruitment in the skin of CD8(+) T cytotoxic 1 effector cells responsible for KC apoptosis.  相似文献   

9.
Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 x 10(-5). Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 x 10(-5) substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified by SGA analysis of plasma virus sampled at intervals typical in large-scale vaccine trials and that pathways of viral diversification and immune escape can be determined accurately.  相似文献   

10.
Homologous recombination was examined in cells infected with herpes simplex virus type I. Circular and linear DNA with directly repeated sequences was introduced as recombination substrates into cells. Recombination was measured either by origin-dependent amplification of recombination products or by recombination-dependent expression of luciferase from a disrupted gene. Homologous recombination in baby hamster kidney cells converted linear DNA to circular templates for DNA replication and luciferase expression in the complete absence of virus. The products of homologous recombination were efficiently amplified by the viral replication apparatus. The efficiency of recombination was dependent on the structure of the substrate as well as the cell type. Linear DNA with the direct repeats at internal positions failed to recombine in Balb/c 3T3 cells and induced p53-dependent apoptosis. In contrast, linear DNA with directly repeated sequences precisely at the ends recombined and replicated in 3T3 cells. Homologous recombination in baby hamster kidney cells did not depend on the position of the repeated sequences. We conclude that homologous recombination is independent of viral gene functions and that it is likely to be carried out by cellular proteins. We suggest that homologous recombination between directly repeated sequences in the linear herpes simplex virus type 1 chromosome may help to avoid p53-dependent apoptosis and to promote viral DNA replication.  相似文献   

11.
The origin-defective simian virus 40 (SV40) mutant 6-1 has been useful in transforming human cells (Small et al., Nature [London] 296:671-672, 1982; Nagata et al., Nature [London] 306:597-599, 1983). However, the low efficiency of transformation achieved by DNA transfection is a major drawback of the system. To increase the efficiency of SV40-induced transformation of human fibroblasts, we used recombinant adenovirus-SV40 virions which contain a complete SV40 early region including either a wild-type or defective (6-1) origin of replication. The SV40 DNA was cloned into the adenovirus vector in place of early region 1. Cell lines transformed by viruses containing a functional origin of replication produced free SV40 DNA. These cell lines were subcloned, and some of the subclones lost the ability to produce free viral DNA. Subclones that failed to produce free viral DNA were found to possess a mutated T antigen. Cell lines transformed by viruses containing origin-defective SV40 mutants did not produce any free DNA. Because of the high efficiency of transformation, we suggest that the origin-defective chimeric virus is a convenient system for establishing SV40-transformed cell lines from any human cell type that is susceptible to infection by adenovirus type 5.  相似文献   

12.
Human papillomavirus (HPV) type 16 DNA induces progressive transformation in NIH 3T3 cells. Two types of cell lines, PM3T3G0 and PM3T3Fo, were isolated by G418 or focus selection, respectively, after transfection of cells by a recombinant HPV 16 DNA carrying the neo gene. These cell lines exhibited distinct phenotypes compared with controls. Saturation densities of PM3T3G0 and PM3T3Fo lines were two- to three- and five- to sevenfold greater than that of control NIH 3T3 cells, respectively. Neither cell type required high serum for growth, in contrast to NIH 3T3 cells. PM3T3G0 lines were premalignant, whereas PM3T3Fo lines manifested tumorigenicity within 2 weeks. Subpopulations of three PM3T3G0 lines underwent progressive transformation as reflected by focus formation. Analysis of HPV 16-specific mRNA species demonstrated that high levels of early and late gene expression were detected in premalignant PM3T3G0 lines, whereas relatively low quantities of selected gene messages were expressed in malignant transformants. Thus, high levels of viral gene expression are not crucial for malignant transformation.  相似文献   

13.
Accurate assessment of gene methylation in formalin-fixed, paraffin-embedded archived tissue (FF-PEAT) by microdissection remains challenging because the tissue volume is small and DNA is damaged. In addition, methods for methylation assessment, such as methylation-specific PCR (MSP), require sodium bisulfite modification (SBM) on purified DNA, which causes major loss of DNA. On-slide SBM, in which DNA is modified in situ before isolation of tumor cells, eliminates DNA purification steps and allows histology-oriented assessment of gene methylation. This study describes a protocol and use of on-slide SBM using 20 FF-PEAT of colorectal cancers with intratumoral adenoma components to detect accumulation of gene methylation during colorectal malignant transformation. Deparaffinized tissue sections were incubated in sodium bisulfite solution for 8 hours at 60 degrees C, stained with hematoxylin, and then microdissected. Proteinase K lysate was directly used as a template in subsequent PCR. Using on-slide SBM, 282-bp-long bisulfite direct sequencing was possible. Yield of modified DNA was 2.6-fold greater than standard SBM on average. The mean conversion rate was 97%, and false-positive or false-negative results were not observed in subsequent MSP. Intratumoral heterogeneity by accumulation of p16 and Ras association domain family protein 1a methylation during malignant transformation were shown by MSP comparing cancer with adenoma parts within a single section. On-slide SBM is applicable in most methylation studies using FF-PEAT. It allows detailed, intratumoral analysis of methylation heterogeneity within solid tumors. On-slide SBM will significantly improve our approach and understanding of epigenetic events in minimal disease and the carcinogenic process.  相似文献   

14.
15.
J P Bader  D A Ray  N R Brown 《Cell》1974,3(3):307-313
  相似文献   

16.
Expression of the SMADIP1 gene during early human development   总被引:21,自引:0,他引:21  
There are four members of the platelet-derived growth factor (PDGF) family; PDGF-A, PDGF-B, PDGF-C and PDGF-D. Their biological effects are mediated via two tyrosine kinase receptors, PDGFR-alpha and PDGFR-beta, and PDGF-mediated signaling is critical for development of many organ systems. Analysis in adult tissues showed that PDGF-C was mainly expressed in kidney, testis, liver, heart and brain. During development, PDGF-C expression was widespread and dynamic, and found in somites and their derivatives, in kidney, lung, brain, and in several other tissues, particularly at sites of developing epidermal openings. PDGF-C may therefore have unique functions during tissue development and maintenance.  相似文献   

17.
To examine the biological properties of the bovine papillomavirus type 1 (BPV) and human papillomavirus type 16 (HPV16) E5 genes, each was cloned separately into a retroviral expression vector and helper-free recombinant viruses were generated in packaging cell lines. The BPV E5 retroviruses efficiently caused morphologic and tumorigenic transformation of cultured lines of murine fibroblasts, whereas the HPV16 E5 viruses were inactive in these assays. In contrast, infection of the p117 established line of murine epidermal keratinocytes with either the BPV or the HPV16 E5 retrovirus resulted in the generation of tumorigenic cells. Pam212 murine keratinocytes were also transformed to tumorigenicity by the HPV16 E5 gene but not by the gene carrying a frameshift mutation. These results establish that the HPV16 E5 gene is a transforming gene in cells related to its normal host epithelial cells.  相似文献   

18.
Specific interactions between retroviral integrase (IN) and long terminal repeats are required for insertion of viral DNA into the host genome. To characterize quantitatively the determinants of substrate specificity, we used a method based on a stepwise increase in ligand complexity. This allowed an estimation of the relative contributions of each nucleotide from oligonucleotides to the total affinity for IN. The interaction of HIV-1 integrase with specific (containing sequences from the LTR) or nonspecific oligonucleotides was analyzed using a thermodynamic model. Integrase interacted with oligonucleotides through a superposition of weak contacts with their bases, and more importantly, with the internucleotide phosphate groups. All these structural components contributed in a combined way to the free energy of binding with the major contribution made by the conserved 3'-terminal GT, and after its removal, by the CA dinucleotide. In contrast to nonspecific oligonucleotides that inhibited the reaction catalyzed by IN, specific oligonucleotides enhanced the activity, probably owing to the effect of sequence-specific ligands on the dynamic equilibrium between the oligomeric forms of IN. However, after preactivation of IN by incubation with Mn(2+), the specific oligonucleotides were also able to inhibit the processing reaction. We found that nonspecific interactions of IN with DNA provide approximately 8 orders of magnitude in the affinity (Delta G degrees approximately equal to -10.3 kcal/mol), while the relative contribution of specific nucleotides of the substrate corresponds to approximately 1.5 orders of magnitude (Delta G degrees approximately equal to - 2.0 kcal/mol). Formation of the Michaelis complex between IN and specific DNA cannot by itself account for the major contribution of enzyme specificity, which lies in the k(cat) term; the rate is increased by more than 5 orders of magnitude upon transition from nonspecific to specific oligonucleotides.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号