首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When cellulase from Penicillium funiculosum was held at between 25°C and 60°C prior to incubation with CM-cellulose and filter paper as cellulosic substrates, it then had a higher thermostability towards soluble CM-cellulose than insoluble filter paper.  相似文献   

2.
Different used paper materials and mixtures thereof were saccharified with Penicillium funiculosum cellulase. Non-similar biodegradation patterns were concluded to be operating as well as declining bioconversion efficiencies with increasing biodegradation. Biowaste mixtures were less effectively biodegraded indicating the importance of separating biowaste into distinctive materials prior to developing it as a resource of bioproduct synthesis.  相似文献   

3.
4.
5.
The three cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] components of Penicillium funiculosum have been immobilized on a soluble, high molecular weight polymer, poly(vinyl alcohol), using carbodiimide. The immobilized enzyme retained over 90% of cellulase [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4], and exo-β-d-glucanase [1,4-β-d-glucan cellobiohydrolase, EC 3.2.1.91] and β-d-glucosidase [β-d-glucoside glucohydrolase, EC 3.2.1.21] activities. The bound enzyme catalysed the hydrolysis of alkali-treated bagasse with a greater efficiency than the free cellulase. The potential for reuse of the immobilized system was studied using membrane filters and the system was found to be active for three cycles.  相似文献   

6.
Penicillium funiculosum produces a complete cellulase which brings about 97% hydrolysis of cotton and has high beta-glucosidase, xylanase, laminarinase, and lichenase activities. This article deals with the effect of different pretreatments on the hydrolysis of sugarcane bagasse by P. funiculosum enzymes and the recovery of enzyme from the insoluble residues. Enzymic saccharification of bagasse pretreated with hot 1N NaOH followed by neutralization with HCI and steam treated under pressure (7 kg/cm(2)) gave 63 and 59% saccharification, respectively, in 48 h. Hemicellulose is not lost in these pretreatments. With a 30% slurry of steam-treated bagasse, a semisolid mass containing 14% sugar was obtained. A 90% recovery of CMCase, beta-glucosidase, and filter paper activity from the hydrolysates was obtained under the following conditions: (1) maintaining the ratio of enzyme to substrate high by stepwise addition of substrate, (2) brief grinding of the residual substrate with glass powder, and (3) addition of 0.4% Tween-80 to the eluting buffer. The high recovery of cellulolytic enzymes indicates that the adsorption of these enzymes on cellulose is not irreversible.  相似文献   

7.
Summary A 1,4--d-glucan glucohydrolase (EC 3.2.1.74) was isolated from culture filtrates of Penicillum funiculosum and purified by isoelectric focussing. The purified enzyme was homogeneous as indicated by electrophoresis on sodium dodecyl sulphate-polyacrylamide gels. The enzyme had a molecular weight of 20 000 and the pI was 4.45. The hydrolysis of Avicel by the purified enzyme and culture broth using equal amounts of Walseth units were comparable. The glucohydrolase did not act in synergism with endoglucanase or cellobiohydrolase from the same culture. The enzyme had little ability to attack carboxymethyl cellulose. It showed activity towards Avicel, Walseth cellulose and cellooligosaccharides (G3-G5), producing glucose as the end product, indicating that the enzyme is a -1–4 glucan glucohydrolase. The enzyme exhibited transglucosidase activity, producing higher oligosaccharides from cellobiose.NCL Communication no. 3899  相似文献   

8.
Summary The endoglucanase component (CMCase I) ofPenicillium funiculosum cellulase was purified to apparent homogeneity by ultrafiltration and gel chromatography. It consists of a single polypeptide chain with a molecular weight of 56000 and is a glycoprotein. Viscometric and end-product analysis revealed the randomness of enzyme action. Multifunctional characteristic of CMCase I was studied with various carbohydrate substrates.NCL Communication No.: 4307  相似文献   

9.
A gene of Penicillium funiculosum encoding an endoglucanase was cloned and expressed in Escherichia coli using the lacZ promoter of vector pUC 18. The gene product hydrolyzed carboxymethyl cellulose and showed strong cross reactivity with P. funiculosum anticellulases.  相似文献   

10.
11.
Summary The cellobiase and xylanase activities of Penicillium funiculosum were immobilized on a soluble polymer poly(vinyl alcohol) (PVA). The kinetic parameters and the adsorption characteristics of the bound and free enzymes were compared. The Km value of the immobilized preparation was the same as the free enzyme. The hydrolysis of different cellulosic substrates by the bound enzyme is investigated.  相似文献   

12.
Twenty-eight Penicillium cultures were screened for dextranase activity. Dextranase yield of about 2000 DU/ml was obtained with Penicillium funiculosum SH-5. Maximum dextranase concentration was attained only when cell mass decreased. The kinetics of the dextranase production was correlated with the cell mass by a two-parameter model. The optimum pH and temperature for dextranase were 5.0-5.5 and 55°C, respectively. Crude dextranase preparation was inhibitory to insoluble glucan formation by streptococcus mutans 6715 in vitro.  相似文献   

13.
14.
The objective of this work is to investigate the utilization of two abundant agricultural residues in Brazil for the production and application of cellulolytic enzymes. Different materials obtained after pretreatment of sugarcane bagasse, as well as pure synthetic substrates, were considered for cellulase production by Penicillium funiculosum. The best results for FPase (354 U L?1) and β-glucosidase (1,835 U L?1) production were observed when sugarcane bagasse partially delignified cellulignin (PDC) was used. The crude extract obtained from PDC fermentation was then partially characterized. Optimal temperatures for cellulase action ranged from 52 to 58°C and pH values of around 4.9 contributed to maximum enzyme activity. At 37°C, the cellulases were highly stable, losing less than 15% of their initial activity after 23 h of incubation. There was no detection of proteases in the P. funiculosum extract, but other hydrolases, such as endoxylanases, were identified (147 U L?1). Finally, when compared to commercial preparations, the cellulolytic complex from P. funiculosum showed more well-balanced amounts of β-glucosidase, endo- and exoglucanase, resulting in the desired performance in the presence of a lignocellulosic material. Cellulases from this filamentous fungus had a higher glucose production rate (470 mg L?1 h?1) when incubated with corn cob than with Celluclast®, GC 220® and Spezyme® (312, 454 and 400 mg L?1 h?1, respectively).  相似文献   

15.
Summary Penicillium funiculosum and its mutants namely BU-36 and N-4 responded differently to the addition of fatty acids. Addition of 0.1% oleic, linoleic, and linolenic acids resulted in significant increase in extracellular exo-glucanase and -glucosidase in wild and N-4 strains, whereas no appreciable increase was noticed in BU-36. However, BU-36 showed positive response with 0.1% palmitic and stearic acids. In all the strains, the addition of different fatty acids did not have any effect on endoglucanase activity. Our results indicate that fatty acids do have a role in the release of the cell-bound cellulolytic enzymes.NCL Communication No. : 4113  相似文献   

16.
The kinetics of cellobiose hydrolysis was studied using β-glucosidase from Penicillium funiculosum, both free and immobilized on nylon powder, at different temperatures, pH values, enzymatic activities and initial cellobiose and glucose concentrations. The experimental results were fitted to a kinetic model by considering the substrate and product inhibitions as well as the thermal deactivation of β-glucosidase with a mean deviation of less than 10%. The immobilization of β-glucosidase led to an increase in the stability of the enzyme against changes in the pH value.  相似文献   

17.
Isolation of a Pure Dextranase from Penicillium funiculosum   总被引:7,自引:1,他引:6       下载免费PDF全文
A dextranase, produced by Penicillium funiculosum, was purified 1,000-fold to yield the enzyme which was demonstrated by gel electrophoresis and electrofocusing to be a homogeneous protein. The purification method included acetone partition, ammonium sulfate fractionation, gel filtration, iron defecation and precipitation, and diethylaminoethyl-cellulose chromatography. The pure enzyme was also obtained by preparative gel electrophoresis. Gel-permeation chromatography indicates a molecular weight of 41,000. An isoelectric pH of 4.6 was established by electrofocusing. A 1-mg amount of the enzyme hydrolyzes a dextran substrate to yield 27,000 isomaltose reducing units in 2 hr.  相似文献   

18.
A method for isolating extracellular glucose oxidase from the fungus Penicillium funiculosum 46.1, using ultrafiltration membranes, was developed. Two samples of the enzyme with a specific activity of 914-956 IU were obtained. The enzyme exhibited a high catalytic activity at pH above 6.0. The effective rate constant of glucose oxidase inactivation at pH 2.6 and 16 degrees C was 2.74 x 10(-6) s-1. This constant decreased significantly as pH of the medium increased (4.0-10.0). The temperature optimum for glucose oxidase-catalyzed beta-D-glucose oxidation was in the range 30-65 degrees C. At temperatures below 30 degrees C, the activation energy for beta-D-glucose oxidation was 6.42 kcal/mol; at higher temperatures, this parameter was equal to 0.61 kcal/mol. Kinetic parameters of glucose oxidase-catalyzed delta-D-glucose oxidation depended on the initial concentration of the enzyme in the solution. Glucose oxidase also catalyzed the oxidation of 2-deoxy-D-glucose, maltose, and galactose.  相似文献   

19.
1. A cellobiohydrolase component was isolated from a Penicillium funiculosum cellulase preparation by chromatography on DEAE-Sephadex, and purified by isoelectric focusing. 2. Purified in this way, the enzyme was homogeneous as judged by electrophoresis on sodium dodecyl sulphate/polyacrylamide gels and isoelectric focusing in polyacrylamide gels. 3. Acting in isolation, the enzyme had little hydrolytic activity to highly ordered celluloses such as cotton fibre, but, when recombined in the original proportions with the other components [endo-(1 leads to 4)-beta-D-glucanase and beta-D-glucosidase] of the complex, 98% of the original activity was recovered. 4. Synergistic effects were also observed when the enzyme was acting in concert with endo-(1 leads to 4)-beta-D-glucanase from other fungal sources. 5. Less-well-ordered celluloses, such as that swollen in H3PO4, were extensively hydrolysed, the principal product being cellobiose. 6. Attack on carboxymethyl-cellulose (CM-cellulose), which is the substrate normally used to assay for endo-(1 leads to 4)-beta-D-glucanase activity, was minimal. 7. The enzyme was associated with 9% of neutral sugar, 88% of which was mannose. It was isoelectric at pH 4.36 (4 degrees C) and had a mol.wt. of 46 300 (determined by gel chromatography on a calibrated column of Ultrogel). 8. The enzyme was specific for the beta-(1 leads to 4)-linkage.  相似文献   

20.
Freeze-drying of highly purified dextranse from Penicillium funiculosum and Fusarium solani was accompanied by 90% losses of enzyme activity and solubility. Many carbohydrates were tested as stabilizers, e.g. glucose, maltose, lactose, polyglucine, dextranase hydrolyzate of polyglucine as well as mannitol and ammonium sulfate. Polyglucine, its hydrolyzate, and glucose proved most effective stabilizers. The stabilizing effect of polyglucine hydrolyzate of dextranase during its heating and freeze-drying was compared. The effective concentration of the stabilizer during freeze-drying was 10 times lower than during heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号