首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear that plants harbor more complex gene regulatory circuits within the core circadian clocks than other organisms, inspiring a fundamental question: are all these regulatory interactions between clock genes equally crucial for the establishment and maintenance of circadian rhythms? Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the total regulatory interactions must be present to express the circadian molecular profiles observed in wild-type plants. A set of those essential interactions is called herein a kernel of the circadian system. The kernel structure unbiasedly reveals four interlocked negative feedback loops contributing to circadian rhythms, and three feedback loops among them drive the autonomous oscillation itself. Strikingly, the kernel structure, as well as the whole clock circuitry, is overwhelmingly composed of inhibitory, rather than activating, interactions between genes. We found that this tendency underlies plant circadian molecular profiles which often exhibit sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate profiles, inhibitory interactions may facilitate the global coordination of temporally-distant clock events that are markedly peaked at very specific times of day. Our systematic approach resulting in experimentally-testable predictions provides insights into a design principle of biological clockwork, with implications for synthetic biology.  相似文献   

2.
Regulation of output from the plant circadian clock   总被引:1,自引:0,他引:1  
Plants, like many other organisms, have endogenous biological clocks that enable them to organize their physiological, metabolic and developmental processes so that they occur at optimal times. The best studied of these biological clocks are the circadian systems that regulate daily (approximately 24 h) rhythms. At the core of the circadian system in every organism are oscillators responsible for generating circadian rhythms. These oscillators can be entrained (set) by cues from the environment, such as daily changes in light and temperature. Completing the circadian clock model are the output pathways that provide a link between the oscillator and the various biological processes whose rhythms it controls. Over the past few years there has been a tremendous increase in our understanding of the mechanisms of the oscillator and entrainment pathways in plants and many useful reviews on the subject. In this review we focus on the output pathways by which the oscillator regulates rhythmic plant processes. In the first part of the review we describe the role of the circadian system in regulation at all stages of a plant's development, from germination and growth to reproductive development as well as in multiple cellular processes. Indeed, the importance of a circadian clock for plants can be gauged by the fact that so many facets of plant development are under its control. In the second part of the review we describe what is known about the mechanisms by which the circadian system regulates these output processes.  相似文献   

3.
Abstract

Circadian clocks are endogenous time keeping mechanisms that drive near 24-h behavioural, physiological and metabolic rhythms in organisms. It is thought that organisms possess circadian clocks to facilitate coordination of essential biological events to the external day and night (extrinsic advantage) so as to enhance Darwinian fitness. However, on Earth, there are a number of habitats that are not subject to such robust daily cycling of geo-physical factors. Do organisms living under such conditions exhibit rhythmic behaviours that are driven by endogenous circadian clocks? We attempt to critically survey studies of rhythms (or the lack of them) in organisms living in a range of constant environments. Many such organisms do show rhythms in behaviour and/or physiological variables. We suggest that such presence of rhythms may be indicative of an underlying clock that facilitates, (a) internal synchrony among rhythms, and (b) temporal partitioning of incompatible cellular processes (intrinsic advantage). We then highlight reasons that limit our interpretations about the presence (or absence) of clocks in such organisms living under constant conditions, and suggest possible methods to conclusively test whether or not rhythms in these organisms are driven by endogenous circadian clocks with the hope that it may enhance our understanding of circadian clocks in organisms under constant environments.  相似文献   

4.
Circadian rhythms have been observed in innumerable physiological processes in most of organisms. Recent molecular and genetic studies on circadian clocks in many organisms have identified and characterized several molecular regulatory factors that contribute to generation of such rhythms. The cyanobacterium is the simplest organism known to harbor circadian clocks, and it has become one of most successful model organisms for circadian biology. In this review, we will briefly summarize physiological observations and consideration of circadian rhythms in cyanobacteria, molecular genetics of the clock using Synechococcus, and current knowledge of the input and output pathways that support the cellular circadian system. Finally, we will document some current problems in the studies on the cyanobacterial circadian clock.  相似文献   

5.
6.
Circadian rhythms are ubiquitous in living organisms, synchronizing life functions at the biochemical, physiological, and behavioral levels. The rhythm-generating mechanisms, collectively known as circadian clocks, are not fully understood in any organism. Research in the fruit fly Drosophila has led to the identification of several clock genes that are involved in the function of the brain-centered clock, which controls behavioral rhythms of adult flies. With the use of clock genes as markers, putative circadian clocks were mapped in the fly peripheral organs and shown to be independent from clocks located in the brain. A homologue of fruit fly period gene has been identified in moths and other insects, allowing investigations of this gene's role in known insect rhythms. This approach may increase our understanding of how circadian clocks are organized into the circadian system that orchestrates temporal integration of life processess in insects.  相似文献   

7.
8.
9.
10.
Abstract

Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g. DNA synthesis) to the whole organism (e.g. behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell-autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell-autonomous circadian clocks and metabolism and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases.  相似文献   

11.
Insects display an impressive variety of daily rhythms, which are most evident in their behaviour. Circadian timekeeping systems that generate these daily rhythms of physiology and behaviour all involve three interacting elements: the timekeeper itself (i.e. the clock), inputs to the clock through which it entrains and otherwise responds to environmental cues such as light and temperature, and outputs from the clock through which it imposes daily rhythms on various physiological and behavioural parameters. In insects, as in other animals, cellular clocks are embodied in clock neurons capable of sustained autonomous circadian rhythmicity, and those clock neurons are organized into clock circuits. Drosophila flies spend their entire lives in small areas near the ground, and use their circadian brain clock to regulate daily rhythms of rest and activity, so as to organize their behaviour appropriately to the daily rhythms of their local environment. Migratory locusts and butterflies, on the other hand, spend substantial portions of their lives high up in the air migrating long distances (sometimes thousands of miles) and use their circadian brain clocks to provide time-compensation to their sun-compass navigational systems. Interestingly, however, there appear to be substantial similarities in the cellular and network mechanisms that underlie circadian outputs in all insects.  相似文献   

12.
13.
Hardin PE 《Current biology : CB》2005,15(17):R714-R722
Daily rhythms in behavior, physiology and metabolism are controlled by endogenous circadian clocks. At the heart of these clocks is a circadian oscillator that keeps circadian time, is entrained by environmental cues such as light and activates rhythmic outputs at the appropriate time of day. Genetic and molecular analyses in Drosophila have revealed important insights into the molecules and mechanisms underlying circadian oscillator function in all organisms. In this review I will describe the intracellular feedback loops that form the core of the Drosophila circadian oscillator and consider how they are entrained by environmental light cycles, where they operate within the fly and how they are thought to control overt rhythms in physiology and behavior. I will also discuss where work remains to be done to give a comprehensive picture of the circadian clock in Drosophila and likely many other organisms.  相似文献   

14.
15.
Temperature compensation of their period is one of the canonical characteristics of circadian rhythms, yet it is not restricted to circadian rhythms. This short review summarizes the evidence for ultradian rhythms, with periods from 1 minute to several hours, that likewise display a strict temperature compensation. They have been observed mostly in unicellular organisms in which their constancy of period at different temperatures, as well as under different growth conditions (e.g., medium type, carbon source), indicates a general homeostasis of the period. Up to eight different parameters, including cell division, cell motility, and energy metabolism, were observed to oscillate with the same periodicity and therefore appear to be under the control of the same central pacemaker. This suggests that these ultradian clocks should be considered as cellular timekeeping devices that in fast-growing cells take over temporal control of cellular functions controlled by the circadian clock in slow-growing or nongrowing cells. Being potential relatives of circadian clocks, these ultradian rhythms may serve as model systems in chronobiolog-ical research. Indeed, mutations have been found that affect both circadian and ultradian periods, indicating that the respective oscillators share some mechanistic features. In the haploid yeast Schizosaccharomyces pombe, a number of genes have been identified where mutation, deletion, or overex-pression affect the ultradian clock. Since most of these genes play roles in cellular metabolism and signaling, and mutations have pleiotropic effects, it has to be assumed that the clock is deeply embedded in cellular physiology. It is therefore suggested that mechanisms ensuring temperature compensation and general homeostasis of period are to be sought in a wider context. (Chronobiology International, 14(5), 469–479, 1997)  相似文献   

16.
Circadian clocks allow organisms to anticipate environmental changes associated with the diurnal light/dark cycle. Circadian oscillators have been described in plants and green algae, cyanobacteria, animals and fungi, however, little is known about the circadian clocks of photosynthetic eukaryotes outside the green lineage. Stramenopiles are a diverse group of secondary endosymbionts whose plastid originated from a red alga. Photosynthetic stramenopiles, which include diatoms and brown algae, play key roles in biogeochemical cycles and are important components of marine ecosystems. Genome annotation efforts indicated the presence of a novel type of oscillator in these organisms and the first circadian clock component in a stramenopile has been recently discovered. This review summarizes the phenotypic characterization of circadian rhythms in stramenopiles and current efforts to determine the mechanisms of this ‘brown clock’. The elucidation of this brown clock will enable a deeper understanding of the role of self-sustained oscillations in the adaptation to life in marine environments.  相似文献   

17.
Circadian rhythms in plants: a millennial view   总被引:5,自引:0,他引:5  
Circadian rhythms are endogenous rhythms with periods of approximately 24 h. These rhythms are widespread both within any given organism and among diverse taxa. As genetic and molecular biological studies, primarily in a subset of model organisms, have begun to identify the components of circadian systems, there is optimism that we will soon achieve a detailed molecular understanding of circadian timing mechanisms. Although plants have provided many examples of rhythmic outputs, and our understanding of photoreceptors of circadian input pathways is well-advanced, plants have lagged behind other groups of organisms in the identification of components of the central circadian oscillator. However, there are now a number of promising candidates for components of plant circadian clocks, and it seems probable that we will soon know the details of a plant central oscillator. Moreover, there is also accumulating evidence that plants and other organisms house multiple circadian clocks, both in different tissues and, quite probably, within individual cells. This provides an unanticipated level of complexity with the potential for interaction among these multiple oscillators.  相似文献   

18.
Circadian (∼24 h) clock regulated biological rhythms have been identified in a wide range of organisms from prokaryotic unicellular cyanobacteria to higher mammals. These rhythms regulate an enormous variety of processes including gene expression, metabolic processes, activity and reproduction. Given the widespread occurrence of circadian systems it is not surprising that extensive efforts have been directed at understanding the adaptive significance of circadian rhythms. In this review we discuss the approaches and findings that have resulted. In studies on organisms in their natural environments, some species show adaptations in their circadian systems that correlate with living at different latitudes, such as clines in circadian clock properties. Additionally, some species show plasticity in their circadian systems suggested to match the demands of their physical and social environment. A number of experiments, both in the field and in the laboratory, have examined the effects of having a circadian system that does not resonate with the organism's environment. We conclude that the results of these studies suggest that having a circadian system that matches the oscillating environment is adaptive.  相似文献   

19.
生物钟机制研究进展   总被引:6,自引:0,他引:6  
黄耀伟  于涟  周继勇 《生命科学》2000,12(1):10-13,29
由生物体内源性生物钟所产生的昼夜节律是近年来生命科学的研究热点之一。几种模型生物(蓝细菌、脉孢菌、拟南芥、果蝇、小鼠)的生物钟相关基因相继被克隆和鉴定,为理解昼夜节律的分子机制奠定了基础。振荡器蛋白对其编码基因的负反馈调控可能是不同生物的生物运作普遍机制,在此基础上,不同生物有不尽相同的调控方式;隐色素可能是高等生物的共同生物钟光受体。  相似文献   

20.
Many daily biological rhythms are governed by an innate timekeeping mechanism or clock. Endogenous, temperature-compensated circadian clocks have been localized to discrete sites within the nervous systems of a number of organisms. In mammals, the master circadian pacemaker is the bilaterally paired suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The SCN is composed of multiple single cell oscillators that must synchronize to each other and the environmental light schedule. Other tissues, including those outside the nervous system, have also been shown to express autonomous circadian periodicities. This review examines 1) how intracellular regulatory molecules function in the oscillatory mechanism and in its entrainment to environmental cycles; 2) how individual SCN cells interact to create an integrated tissue pacemaker with coherent metabolic, electrical, and secretory rhythms; and 3) how such clock outputs are converted into temporal programs for the whole organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号