首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascularized tumors are exposed to intermittent hypoxia, that is, hypoxia followed by periods of reoxygenation. Abnormal structure and dysfunction of tumor blood vessels are responsible for these conditions. These repeated short periods of hypoxia concern tumor cells as well as endothelial cells. However, the effects of intermittent hypoxia are poorly understood. The aim of this study was to investigate the effects of intermittent hypoxia on endothelial cells and particularly on HIF-1α, a central actor in adaptive response to hypoxia. For that, endothelial cells were exposed to four repeated cycles of 1-h hypoxia followed by 30 min of reoxygenation. We showed that repeated cycles of hypoxia/reoxygenation induced a modification in HIF-lα phosphorylation pattern: a progressive increase in HIF-1α phosphorylated form was observed during the hypoxic periods. Activation of p42/p44, Akt and PKA was observed in parallel. PKA was shown to be involved in the phosphorylation of HIF-lα under intermittent hypoxia, while p42/p44 and Akt were not. As HIF-1 activity is often associated with enhanced cell survival, a better knowledge of the effects of intermittent hypoxia on endothelial cells and the highlight of particular mechanisms induced by intermittent hypoxia are essential to understand the behavior of endothelial cells during neo-angiogenesis.  相似文献   

2.
3.
Hypoxia-inducible factor-1 (HIF-1), consisting of two subunits, HIF-1alpha and HIF-1beta, is a key regulator for adaptation to low oxygen availability, i.e., hypoxia. Compared to the constitutively expressed HIF-1beta, HIF-1alpha is regulated by hypoxia but also under normoxia (21% O(2)) by several stimuli, including nitric oxide (NO). In this study, we present evidence that overexpression of mitochondrial-located thioredoxin 2 (Trx2) or thioredoxin reductase 2 (TrxR2) attenuated NO-evoked HIF-1alpha accumulation and transactivation of HIF-1 in HEK293 cells. In contrast, cytosolic-located thioredoxin 1 (Trx1) enhanced HIF-1alpha protein amount and activity under NO treatments. Taking into consideration that thioredoxins affect the synthesis of HIF-1alpha by altering Akt/mTOR signaling, we herein show that p42/44 mitogen-activated protein kinase and p70S6 kinase are involved. Moreover, intracellular ATP was increased in Trx1-overexpressing cells but reduced in cells overexpressing Trx2 or TrxR2, providing thus an understanding of how protein synthesis is regulated by thioredoxins.  相似文献   

4.
Intermittent hypoxia, followed by reoxygenation, determines the production of reactive oxygen species (ROS), which may lead to accelerated aging and to the appearance of age-related diseases. The rise in ROS levels might constitute a stress-stimulus activating specific redox-sensitive signalling pathways, so inducing either damaging or protective functions. Here, we report that in old rat cerebral cortex exposed to hypoxia, the accumulation in the cytoplasm of hypoxic inducible factor 1alpha (HIF-1alpha)--the master regulator of oxygen homeostasis--concomitant with p66(Shc) activation and reduced IkBalpha phosphorylation is associated with tissue apoptosis or necrosis. In young cerebral cortex, we hypothesize that the hypoxic damage may be reversible, based on our demonstration of elevated HIF-1alpha levels, combined with a low level of IkBalpha phosphorylation, a decrease in IAP-1 and a lack of major change in Bcl2 family proteins. These observations are associated with a low level of cell death induced by hypoxia, suggesting that HIF-1alpha activation in cortical neurons may produce rescue proteins in response to intermittent hypoxia.  相似文献   

5.
6.
7.
Hypoxia inducible factor-1alpha (HIF-1alpha) mRNA expression is significantly decreased under hypoxia in different cell lines exposed directly to hypoxia or treated with dimethyloxalylglycine which mimics hypoxic effects under normoxic conditions. However, the decreased expression of HIF-1alpha mRNA is accompanied by an increase of HIF-1alpha protein (pHIF-1alpha) level as well as by overexpression of known HIF-dependent genes (VEGF, Glut1, PFKFB-3 and PFKFB-4) under hypoxic conditions or with the use of dimethyloxalylglycine. Expression of HIF-1alpha mRNA also depends on iron because desferrioxamine and cobalt chloride produce similar to hypoxia effects on the levels of this mRNA. It was shown that HIF-1alpha mRNA expression did not change significantly in some cell lines (SKBR3, MDA-MB468 and BT549) under hypoxia. However, in these cell lines hypoxia decreases expression of HIF-2alpha mRNA, another member of HIF-alpha gene family, as a result of cell specific regulation of HIF-alpha genes under hypoxia. Moreover, hypoxia slightly induces expression of PFKFB-4 mRNA in SKBR3, MDA-MB468 and BT549 as compared to other cell lines where this effect of hypoxia was much stronger and adaptation to hypoxia is controlled by HIF-1alpha. Hypoxia slightly reduces expression of tumor suppressor VHL which targets HIF-1alpha for ubiquitination. Thus, our results clearly demonstrated down regulation of HIF-1alpha or HIF-2alpha in different cell lines by hypoxia.  相似文献   

8.
Human intestinal epithelial cell monolayers (Caco-2) subjected to hypoxia and reoxygenation release soluble factors into the apical medium that activate the virulence of the opportunistic pathogen Pseudomonas aeruginosa to express the potent barrier-dysregulating protein PA-I lectin/adhesin. In this study, we defined the role of hypoxia-inducible factor (HIF)-1alpha in this response. We tested the ability of medium from Caco-2 cells with forced expression of HIF-1alpha to increase PA-I expression in P. aeruginosa and found that medium from Caco-2 cells overexpressing HIF-1alpha increased PA-I expression compared with medium from control cells (P < 0.001, ANOVA). To identify the components responsible for this response, medium was fractionated by molecular weight and subjected to mass spectroscopy, which identified adenosine as the possible mediator. Both adenosine and its immediate downstream metabolite inosine induced PA-I expression in P. aeruginosa in a dose-dependent fashion. Because inosine was not detectable in the medium of Caco-2 cells exposed to hypoxia or overexpressing HIF-1alpha, we hypothesized that P. aeruginosa itself might metabolize adenosine to inosine. Using mutant and parental strains of P. aeruginosa, we demonstrated that P. aeruginosa metabolized adenosine to inosine via adenosine deaminase and that the conditioned medium enhanced the extracellular accumulation of inosine. Together, these results provide evidence that P. aeruginosa can recognize and respond to extracellular end products of intestinal hypoxia that are released after activation of HIF-1alpha. The ability of P. aeruginosa to metabolize adenosine to inosine may represent a subversive microbial virulence strategy that deprives the epithelium of the cytoprotective actions of adenosine.  相似文献   

9.
10.
Accumulation of HIF-1alpha during normoxic conditions at high cell density has previously been shown to occur and can be used to stabilize HIF-1alpha protein in the absence of a specific anaerobic chamber. However, the impact and origin of this pool of HIF-1alpha, obtained under normoxia, has been underestimated. In this study, we have systematically compared the related pools of HIF-1alpha stabilized in normoxia by high cell density to those obtained at low density in hypoxia. At first glance, these two stimuli appear to have similar outcomes: HIF-1alpha stabilization and induction of HIF-1-dependent genes. However, upon careful analysis, we observed that molecular mechanisms involved are different. We clearly demonstrate that density-dependant HIF-1alpha accumulation during normoxia is due to the cells high consumption of oxygen, as demonstrated by using a respiration inhibitor (oligomycin) and respiratory-defective mutant cells (GSK3). Finally and most importantly, our data indicate that a decrease in AKT activity followed by a total decrease in p70(S6K) phosphorylation reflecting a decrease in mTOR activity occurs during high oxygen consumption, resulting from high cell density. In contrast, hypoxia, even at severe low O(2) levels, only slightly impacts upon the mTOR pathway under low cell density conditions. Thus, activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway whereas HIF-1alpha activation obtained in high confluency is totally dependent on mTOR pathway as rapamycin totally impaired (i) HIF-1alpha stabilization and (ii) mRNA levels of CA9 and BNIP3, two HIF-target genes.  相似文献   

11.
12.
At a low-oxygen tension, cells increase the expression of several genes (such as erythropoietin, the vascular endothelial growth factor, and glycolytic enzymes) in order to adapt to hypoxic stress. A common transactivator, named the hypoxia-inducible factor 1 (HIF-1) activates these genes. HIF-1 is a heterodimeric transactivator that is composed of alpha and beta subunits. HIF-1 activity is primarily determined by the hypoxia-induced stabilization of the alpha subunit, whereas the HIF-1beta subunit is expressed constitutively. Our previous observation implied that the MEK-1/p42/p44 MAPK pathway is involved in the hypoxia-induced transactivation ability, but not in the stabilization and DNA binding of HIF-1alpha. In this paper, we dissected the transactivation domain of HIF-1alpha in more detail, and tested the correlation between specific domains of HIF-1alpha and specific signaling pathways. We designed several fusion proteins that contain deletion mutants of HIF-1alpha that is linked to the DNA binding domain of the yeast protein Gal4. By using the Gal4-driven reporter system, we tested the transactivation activities of the Gal4/HIF-1alpha fusion proteins in Hep3B cells. Our findings suggest that tyrosine kinases, the MEK-1/p42/p44 MAPK pathway, but not the PI-3 kinase/Akt pathway, are involved in the hypoxia-induced transactivation of HIF-1alpha. We have shown that the functional transactivation activities are located at both 522-649 and 650-822 amino acids of HIF-1alpha. Treatment of PD98059, a MEK-1 inhibitor, blocked the hypoxia-induced transactivation abilities of both the 522-649 and 650-822 amino acids of the C-terminal half of HIF-1alpha. This implies that the MEK-1/p42/p44 MAPK signaling pathway cannot distinguish between the two hypoxia-induced transactivation domains.  相似文献   

13.
14.
15.
Hypoxia inducible factor-1 alpha (HIF-1 alpha) is a key determinant of oxygen-dependent gene regulation in angiogenesis. HIF-1 alpha overexpression may be beneficial in cell therapy of hypoxia-induced pathophysiological processes, such as ischemic heart disease. To address this issue, human peripheral blood mononuclear cells (PBMNCs) were induced to differentiate into endothelial progenitor cells (EPCs), and then were transfected with either an HIF-1 alpha-expressing or a control vector and cultured under normoxia or hypoxia. Hypoxia-induced HIF-1 alpha mRNA and protein expression was increased after HIF-1 alpha transfection. This was accompanied by VEGF mRNA induction and increased VEGF secretion. Hypoxia-stimulated VEGF mRNA induction was significantly abrogated by HIF-1 alpha-specific siRNA. Functional studies showed that HIF-1 alpha overexpression further promoted hypoxia-induced EPC differentiation, proliferation and migration. The expressions of endothelial cell markers CD31, VEGFR2 (Flk-1) and eNOS as well as VEGF and NO secretions were also increased. Furthermore, in an in vivo model of hindlimb ischemia, HIF-1 alpha-transfected EPCs homed to the site of ischemia. A higher revascularization potential was also demonstrated by increased capillary density at the injury site. Our results revealed that endothelial progenitor cells ex vivo modification by hypoxia inducible factor-1 alpha gene transfection is feasible and may offer significant advantages in terms of EPC expansion and treatment efficacy.  相似文献   

16.
Hypoxia results in adaptationally appropriate alterations of gene expression through the activation of hypoxia-inducible factor (HIF)-1 to overcome any shortage of oxygen. Peripheral blood mononuclear cells may be exposed to low oxygen tensions for different times as they migrate between blood and various tissues. We and others have previously shown that T-cell adaptation to hypoxia is characterized by a modulation of cytokine expression and an inhibition of T-cell activation. We have recently demonstrated that the adaptor protein p66Shc negatively regulates T-cell activation and survival. We here show that hypoxia enhances HIF-1alpha accumulation and vascular endothelial growth factor production in T cells. Hypoxic T cells expressed high levels of p21(WAF1/CIP1), of the pro-apoptotic molecules BNIP3, a classic HIF target gene, and BAX, as well as low levels of the anti-apoptotic molecule BCLxl, associated with an induction of cell death. We found out that hypoxic T cells expressed p66Shc. Furthermore, using T-cell transfectants expressing p66Shc, as well as T cells derived from mice p66Shc-/-, we defined a role of p66Shc in T-cell responses to hypoxia. Of interest, hypoxic p66Shc-positive transfectants expressed higher level of HIF-1alpha than negative controls. Thus, p66Shc may play an important role in downstream hypoxic signaling, involving HIF-1alpha protein accumulation and cell death in T lymphocytes.  相似文献   

17.
18.
19.
20.
Electrical stimulation of the vagal efferent nerve improves the survival of myocardial infarcted rats. However, the mechanism for this beneficial effect is unclear. We investigated the effect of acetylcholine (ACh) on hypoxia-inducible factor (HIF)-1alpha using rat cardiomyocytes under normoxia and hypoxia. ACh posttranslationally regulated HIF-1alpha and increased its protein level under normoxia. ACh increased Akt phosphorylation, and wortmannin or atropine blocked this effect. Hypoxia-induced caspase-3 activation and mitochondrial membrane potential collapse were prevented by ACh. Dominant-negative HIF-1alpha inhibited the cell protective effect of ACh. In acute myocardial ischemia, vagal nerve stimulation increased HIF-1alpha expression and reduced the infarct size. These results suggest that ACh and vagal stimulation protect cardiomyocytes through the PI3K/Akt/HIF-1alpha pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号