首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Procollagen C-proteinase enhancer-1 (PCPE-1) is an extracellular matrix (ECM) glycoprotein that can stimulate procollagen processing by procollagen C-proteinases (PCPs) such as bone morphogenetic protein-1 (BMP-1). The PCPs can process additional extracellular protein precursors and play fundamental roles in developmental processes and assembly of the ECM. The stimulatory activity of PCPE-1 is restricted to the processing of fibrillar procollagens, suggesting PCPE-1 is a specific regulator of collagen deposition. PCPE-1 consists of two CUB domains that bind to the procollagen C-propeptides and are required for PCP enhancing activity, and one NTR domain that binds heparin. To understand the biological role of the NTR domain, we performed surface plasmon resonance (SPR) binding assays, cell attachment assays as well as immunofluorescence and activity assays, all indicating that the NTR domain can mediate PCPE-1 binding to cell surface heparan sulfate proteoglycans (HSPGs). The SPR data revealed binding affinities to heparin/HSPGs in the high nanomolar range and dependence on calcium. Both 3T3 mouse fibroblasts and human embryonic kidney cells (HEK-293) attached to PCPE-1, an interaction that was inhibited by heparin. Cell attachment was also inhibited by an NTR-specific antibody and the NTR fragment. Immunofluorescence analysis revealed that PCPE-Flag binds to mouse fibroblasts and heparin competes for this binding. Cell-associated PCPE-Flag stimulated procollagen processing by BMP-1 several fold. Our data suggest that through interaction with cell surface HSPGs, the NTR domain can anchor PCPE-1 to the cell membrane, permitting pericellular enhancement of PCP activity. This points to the cell surface as a physiological site of PCPE-1 action.  相似文献   

2.
Procollagen C-proteinase enhancer (PCPE) is an extracellular matrix glycoprotein that can stimulate the action of tolloid metalloproteinases, such as bone morphogenetic protein-1, on a procollagen substrate, by up to 20-fold. The PCPE molecule consists of two CUB domains followed by a C-terminal NTR (netrin-like) domain. In order to obtain structural insights into the function of PCPE, the recombinant protein was characterized by a range of biophysical techniques, including analytical ultracentrifugation, transmission electron microscopy, and small angle x-ray scattering. All three approaches showed PCPE to be a rod-like molecule, with a length of approximately 150 A. Homology modeling of both CUB domains and the NTR domain was consistent with the low-resolution structure of PCPE deduced from the small angle x-ray scattering data. Comparison with the low-resolution structure of the procollagen C-terminal region supports a recently proposed model (Ricard-Blum, S., Bernocco, S., Font, B., Moali, C., Eichenberger, D., Farjanel, J., Burchardt, E. R., van der Rest, M., Kessler, E., and Hulmes, D. J. S. (2002) J. Biol. Chem. 277, 33864-33869) for the mechanism of action of PCPE.  相似文献   

3.
Bone morphogenetic protein-1 (BMP-1) and the tolloid-like metalloproteinases control several aspects of embryonic development and tissue repair. Unlike other proteinases whose activities are regulated mainly by endogenous inhibitors, regulation of BMP-1/tolloid-like proteinases relies mostly on proteins that stimulate activity. Among these, procollagen C-proteinase enhancers (PCPEs) markedly increase BMP-1/tolloid-like proteinase activity on fibrillar procollagens, in a substrate-specific manner. Here, we performed a detailed quantitative study of the binding of PCPE-1 and of its minimal active fragment (CUB1-CUB2) to three regions of the procollagen III molecule: the triple helix, the C-telopeptide, and the C-propeptide. Contrary to results described elsewhere, we found the PCPE-1-binding sites to be located exclusively in the C-propeptide region. In addition, binding and enhancing activities were found to be independent of the glycosylation state of the C-propeptide. These data exclude previously proposed mechanisms for the action of PCPEs and also suggest new mechanisms to explain how these proteins can stimulate BMP-1/tolloid-like proteinases by up to 20-fold.  相似文献   

4.
The processing of the fibrillar procollagen precursors to mature collagens is an essential requirement for fibril formation. The enzymes involved in these events are known as the procollagen N and C proteinases. The latter, which cleaves the C-propeptides of the fibrillar procollagens I-III, is identical to the previously described bone morphogenetic protein-1 (BMP-1). Surprisingly, unlike the other fibrillar collagens, the processing of the C-propeptide domain of the procollagen V homotrimer was found to be mediated by furin rather than BMP-1. However, the presence of putative BMP-1 cleavage sites in the alpha1(V) C-propeptide sequence prompted us to reconsider the procollagen V C-propeptide cleavage by BMP-1. Using a recombinant system to produce substantial amounts of the proalpha1(V) homotrimer, we have previously shown that the C-propeptide is spontaneously released in the culture medium. The trimeric C-propeptide fragment, resulting from the furin cleavage, still encompassed the predicted BMP-1 cleavage sites. It was purified and tested as a substrate for BMP-1. In parallel, the release of the C-propeptide in the culture medium was inhibited by the addition of a specific furin inhibitor, allowing the re-examination of BMP-1 activity on the intact molecule. We showed that BMP-1 does cleave both substrates at one of the two predicted C-proteinase cleavage sites. Our results favor a role for PCP/BMP-1 in physiological C-terminal processing of procollagen V and imply a general mechanism for fibrillar collagen C-terminal processing.  相似文献   

5.
Bone morphogenetic protein 1 (BMP-1), which is a tolloid member of the astacin-like family of zinc metalloproteinases, is a highly effective procollagen C-proteinase (PCP) and chordinase. On the other hand, mammalian tolloid like-2 (mTLL-2) does not cleave chordin or procollagen; procollagen is cleaved by mTLL-2 in the presence of high levels of procollagen C-proteinase enhancer-1 (PCPE-1), for reasons that are unknown. We used these differences in activity between BMP-1 and mTLL-2 to narrow in on the domains in BMP-1 that specify PCP and chordinase activity. Using a domain swap approach, we showed that: 1) the metalloproteinase and CUB2 domains of BMP-1 are absolutely required for PCP activity; swaps with either of the corresponding domains in BMP-1 and mTLL-2 did not result in procollagen cleavage and 2) the proteinase domain of mTLL-2 can cleave chordin if coupled to the CUB1 domain of BMP-1. Therefore, the minimal structure for chordinase activity comprises a metalloproteinase domain (either from BMP-1 or from mTLL-2) and the CUB1 domain of BMP-1 (the CUB1 domain of mTLL-2 cannot substitute for the CUB1 domain of BMP-1). We showed that the minimal procollagen C-proteinase (BMP-1 lacking the EGF and CUB3 domain) was enhanced by PCPE-1 but not as well as BMP-1 retaining the CUB3 domain. Further studies showed that PCPE-1 had no effect on the ability of BMP-1 to cleave chordin. The data support a previously suggested mechanism of PCPE-1 whereby PCPE-1 interacts with procollagen, but in addition, the CUB3 domain of BMP-1 appears to augment the interaction.  相似文献   

6.
Procollagen C-proteinase enhancers (PCPE-1 and -2) specifically activate bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family during C-terminal processing of fibrillar collagen precursors. PCPEs consist of two CUB domains (CUB1 and CUB2) and one NTR domain separated by one short and one long linker. It was previously shown that PCPEs can strongly interact with procollagen molecules, but the exact mechanism by which they enhance BMP-1 activity remains largely unknown. Here, we used a series of deletion mutants of PCPE-1 and two chimeric constructs with repetitions of the same CUB domain to study the role of each domain and linker. Out of all the forms tested, only those containing both CUB1 and CUB2 were capable of enhancing BMP-1 activity and binding to a mini-procollagen substrate with nanomolar affinity. Both these properties were lost by individual CUB domains, which had dissociation constants at least three orders of magnitude higher. In addition, none of the constructs tested could inhibit PCPE activity, although CUB2CUB2NTR was found to modulate BMP-1 activity through direct complex formation with the enzyme, resulting in a decreased rate of substrate processing. Finally, increasing the length of the short linker between CUB1 and CUB2 was without detrimental effect on both activity and substrate binding. These data support the conclusion that CUB1 and CUB2 bind to the procollagen substrate in a cooperative manner, involving the short linker that provides a flexible tether linking the two binding regions.  相似文献   

7.
Procollagen C-proteinase enhancers (PCPE-1 and -2) are extracellular glycoproteins that can stimulate the C-terminal processing of fibrillar procollagens by tolloid proteinases such as bone morphogenetic protein-1. They consist of two CUB domains (CUB1 and -2) that alone account for PCPE-enhancing activity and one C-terminal NTR domain. CUB domains are found in several extracellular and plasma membrane-associated proteins, many of which are proteases. We have modeled the structure of the CUB1 domain of PCPE-1 based on known three-dimensional structures of CUB-containing proteins. Sequence alignment shows conserved amino acids, notably two acidic residues (Asp-68 and Asp-109) involved in a putative surface-located calcium binding site, as well as a conserved tyrosine residue (Tyr-67). In addition, three residues (Glu-26, Thr-89, and Phe-90) are found only in PCPE CUB1 domains, in putative surface-exposed loops. Among the conserved residues, it was found that mutations of Asp-68 and Asp-109 to alanine almost completely abolished PCPE-1 stimulating activity, whereas mutation of Tyr-67 led to a smaller reduction of activity. Among residues specific to PCPEs, mutation of Glu-26 and Thr-89 had little effect, whereas mutation of Phe-90 dramatically decreased the activity. Changes in activity were paralleled by changes in binding of different PCPE-1 mutants to a mini-procollagen III substrate, as shown by surface plasmon resonance. We conclude that PCPE-stimulating activity requires a calcium binding motif in the CUB1 domain that is highly conserved among CUB-containing proteins but also that PCPEs contain specific sites that could become targets for the development of novel anti-fibrotic therapies.  相似文献   

8.
The procollagen C-proteinase (PCP) is a zinc peptidase of the astacin family and the metzincin superfamily. The enzyme removes the C-terminal propeptides of fibrillar procollagens and activates other matrix proteins. Besides its catalytic protease domain, the procollagen C-proteinase contains several C-terminal CUB modules (named after complement factors C1r and C1s, the sea urchin UEGF protein, and BMP-1) and EGF-like domains. The two major splice forms of the C-proteinase differ in their overall domain composition. The longer variant, termed mammalian tolloid (mTld, i.e., PCP-2), has the protease-CUB1-CUB2-EGF1-CUB3-EGF2-CUB4-CUB5 composition, whereas the shorter form termed bone morphogenetic protein 1 (BMP-1, i.e., PCP-1) ends after the CUB3 domain. Two related genes encode proteases similar to mTld in humans and have been termed mammalian tolloid like-1 and -2 (mTll-1 and mTll-2, respectively). For mTll-1, it has been shown that it has C-proteinase activity. We demonstrate that recombinant EGF1-CUB3, CUB3, CUB3-EGF2, EGF2-CUB4, and CUB4-CUB5 modules of the procollagen C-proteinase can be expressed in bacteria and adopt a functional antiparallel beta-sheet conformation. As shown by surface plasmon resonance analysis, the modules bind to procollagen I in a 1:1 stoichiometry with dissociation constants (K(D)) ranging from 622.0 to 1.0 nM. Their binding to mature collagen I is weaker by at least 1 order of magnitude. Constructs containing EGF domains bind more strongly than those consisting of CUB domains only. This suggests that a combination of CUB and EGF domains serves as the minimal functional unit. The binding affinities of the EGF-containing modules for procollagen increase in the order EGF1-CUB3 < CUB3-EGF2 < EGF2-CUB4. In the context of the full length PCP, this implies that a given module has an affinity that continues to increase the more C-terminally the module is located within the PCP. The tightest binding module, EGF2-CUB4 (K(D) = 1.0 nM), is only present in mTld, which might provide a quantitative explanation for the different efficiencies of BMP-1 and mTld in procollagen C-proteinase activity.  相似文献   

9.
Dialysis related amyloidosis (DRA) is a progressive and serious complication in patients under long-term hemodialysis and mainly leads to osteo-articular diseases. Although beta(2)-microglobulin (beta2-m) is the major structural component of beta2-m amyloid fibrils, the initiation of amyloid formation is not clearly understood. Here, we have identified procollagen C-proteinase enhancer-1 (PCPE-1) as a new interacting protein with beta2-m by screening a human synovium cDNA library. The interaction of beta2-m with full-length PCPE-1 was confirmed by immunoprecipitation, solid-phase binding and pull-down assays. By yeast two-hybrid analysis and pull-down assay, beta2-m appeared to interact with PCPE-1 via the NTR (netrin-like) domain and not via the CUB (C1r/C1s, Uegf and BMP-1) domain region. In synovial tissues derived from hemodialysis patients with DRA, beta2-m co-localized and formed a complex with PCPE-1. beta2-m did not alter the basal activity of bone morphogenetic protein-1/procollagen C-proteinase (BMP-1/PCP) nor BMP-1/PCP activity enhanced by PCPE-1. PCPE-1 did not stimulate beta2-m amyloid fibril formation from monomeric beta2-m in vitro under acidic and neutral conditions as revealed by thioflavin T fluorescence spectroscopy and electron microscopy. Since PCPE-1 is abundantly expressed in connective tissues rich in type I collagen, it may be involved in the initial accumulation of beta2-m in selected tissues such as tendon, synovium and bone. Furthermore, since such preferential deposition of beta2-m may be linked to subsequent beta2-m amyloid fibril formation, the disruption of the interaction between beta2-m and PCPE-1 may prevent beta2-m amyloid fibril formation and therefore PCPE-1 could be a new target for the treatment of DRA.  相似文献   

10.
Bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases, here called BTPs, include the proteases originally identified for their roles in the C-terminal maturation of fibrillar procollagens (“procollagen C-proteinase”). Though numerous other substrates have since been discovered, the BTPs remain the main proteases involved in extracellular matrix assembly with little or no implication in matrix degradation. During the same period however, the BTPs have also become established as important proteases in the activation of growth factors, including TGF-β1, BMP-2/-4, GDF-8/-11 and IGFs, as well as the release of anti-angiogenic fragments from parent proteins. The BTPs are therefore key players in many pathophysiological processes such as morphogenesis, tissue repair and tumor progression. This mini-review summarizes our current knowledge of the functions of BTPs, their substrates and unusual mechanisms of regulation, and discusses their potential as new targets for future therapies.  相似文献   

11.
Mutations in the type I procollagen C-propeptide occur in ~6.5% of Osteogenesis Imperfecta (OI) patients. They are of special interest because this region of procollagen is involved in α chain selection and folding, but is processed prior to fibril assembly and is absent in mature collagen fibrils in tissue. We investigated the consequences of seven COL1A1 C-propeptide mutations for collagen biochemistry in comparison to three probands with classical glycine substitutions in the collagen helix near the C-propeptide and a normal control. Procollagens with C-propeptide defects showed the expected delayed chain incorporation, slow folding and overmodification. Immunofluorescence microscopy indicated that procollagen with C-propeptide defects was mislocalized to the ER lumen, in contrast to the ER membrane localization of normal procollagen and procollagen with helical substitutions. Notably, pericellular processing of procollagen with C-propeptide mutations was defective, with accumulation of pC-collagen and/or reduced production of mature collagen. In vitro cleavage assays with BMP-1 ± PCPE-1 confirmed impaired C-propeptide processing of procollagens containing mutant proα1(I) chains. Overmodified collagens were incorporated into the matrix in culture. Dermal fibrils showed alterations in average diameter and diameter variability and bone fibrils were disorganized. Altered ER-localization and reduced pericellular processing of defective C-propeptides are expected to contribute to abnormal osteoblast differentiation and matrix function, respectively.  相似文献   

12.
Intracellular transport and tyrosine sulfation of procollagens V   总被引:3,自引:0,他引:3  
Several tyrosine residues of the extracellular p-collagens V and collagens V are sulfated [Fessler, L. I., Brosh, S., Chapin, S. and Fessler, J. H. (1986) J. Biol. Chem. 261, 5034-5040]. Here, the sulfation of their intracellular precursors, the procollagens V, was studied. A Golgi-enriched subcellular fraction of chick embryo tendon catalyzed the sulfation of tyrosine residues in both endogenous and added, unsulfated procollagens V with the sulfate donor 3'-phosphoadenosine 5'-[35S]phosphosulfate. Intracellular tyrosine sulfation of procollagen V occurred at a point distal to the cis Golgi compartment as judged by change of the N-linked carbohydrate of procollagen V from being endoglycosidase-H-sensitive to being resistant. The time course of the intracellular modifications of procollagen V was determined by incubating tendons with 3H-labeled amino acids and with [35S]sulfate. The pro alpha(V) chains were synthesised in about 10 min and then assembled into unsulfated procollagen V molecules. Tyrosine sulfation occurred 50 min after completion of polypeptide synthesis and the molecules were successively sulfated in the order in which they had been synthesized. The antimicrotubular drug Nocodazole, which disrupts the spatial organization of the Golgi, decreased the time interval between synthesis of procollagens V and sulfation. The sulfated procollagens V were soon secreted and cut to sulfated p-collagens V. Sulfated pro alpha 1(V) chains were cleaved faster than sulfated pro alpha 1'(V) chains. The relationship of sequential protein modification to spatial cellular organization is discussed.  相似文献   

13.
The low abundance fibrillar collagen type V is incorporated into and regulates the diameters of type I collagen fibrils. Bone morphogenetic protein-1 (BMP-1) is a metalloprotease that plays key roles in regulating formation of vertebrate extracellular matrix; it cleaves the C-propeptides of the major fibrillar procollagens I-III and processes precursors to produce the mature forms of the cross-linking enzyme prolysyl oxidase, the proteoglycan biglycan, and the basement membrane protein laminin 5. Here we have successfully produced recombinant pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, and we have used these to characterize biosynthetic processing of the most prevalent in vivo form of type V procollagen. In addition, we have compared the processing of endogenous pro-alpha1(V) chains by wild type mouse embryo fibroblasts and by fibroblasts derived from embryos doubly homozygous null for the Bmp-1 gene and for a gene encoding the closely related metalloprotease mammalian Tolloid-like 1. Together, results presented herein indicate that within pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, pro-alpha1(V) N-propeptides and pro-alpha2(V) C-propeptides are processed by BMP-1-like enzymes, and pro-alpha1(V) C-propeptides are processed by furin-like proprotein convertases in vivo.  相似文献   

14.
15.
16.
The deposition of insoluble functional collagen occurs following extracellular proteolytic processing of procollagens by procollagen N- and C-proteinases, fibril formation, and lysyl oxidase dependent cross-linking. Procollagen C-proteinases in addition process and activate lysyl oxidase. The present study evaluates a possible role for procollagen C-proteinases in controlling different aspects of collagen deposition in vitro. Studies determine whether inhibition of procollagen C-proteinase activity with a specific BMP-1 inhibitor results in perturbations in lysyl oxidase activation, and in collagen processing, deposition, and cross-linking in phenotypically normal cultured murine MC3T3-E1 cells. Data show that BMP-1 Inhibitor dose dependently inhibits lysyl oxidase activation by up to 50% in undifferentiated proliferating cells. In differentiating cultures, BMP-1 inhibitor decreased collagen processing but did not inhibit the accumulation of mature collagen cross-links. Finally, electron microscopy studies show that collagen fibril diameter increased. Thus, inhibition of procollagen C-proteinases results in perturbed collagen deposition primarily via decreased collagen processing.  相似文献   

17.
A Drosophila melanogaster gene for a basement membrane procollagen chain was recently identified from the sequence homology of the carboxyl (NC1) end of the polypeptide that it encodes with the corresponding domain of human and murine collagens IV (Blumberg, B., MacKrell, A. J., Olson, P. F., Kurkinen, M., Monson, J. M., Natzle, J. E., and Fessler, J. H. (1987) J. Biol. Chem. 262, 5947-5950). This gene is at chromosome location 25C. Here we report the complete 6-kilobase cDNA sequence coding for a chain of 1775 amino acids, as well as the genomic structure. The gene is composed of nine relatively large exons separated by eight relatively small introns. This organization is different from the multiple small exons separated by large introns reported for mouse and human type IV collagens (Kurkinen, M., Bernard, M. P., Barlow, D. P., and Chow, L. T. (1985) Nature 317, 177-179. Sakurai, Y., Sullivan, M., and Yamada, Y. (1986) J. Biol. Chem. 261, 6654-6657. Soininen, R., Tikka, L., Chow, L., Pihlajaniemi, T., Kurkinen, M., Prockop, D. J., Boyd, C. D., and Tryggvason, K. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1568-1572). Drosophila and human alpha 1(IV) procollagen chains share not only polypeptide domains near their amino and carboxyl ends for making specialized, intermolecular junctional complexes, but also 11 of 21 sites of imperfections of the collagen triple helix. However, neither the number nor the nature of the amino acids in these imperfections appear to have been conserved. These imperfections of the helical sequence may be important for the supramolecular assembly of basement membrane collagen. The 9 cysteine residues of the Drosophila collagen thread domain are arranged as several variations of a motif found in vertebrate collagens IV only near their amino ends, in their "7 S" junctional domains. The relative positions of these cysteine residues provide numerous opportunities for disulfide bonding between molecules in both parallel and antiparallel arrays. There is a pseudorepeat of one-third of the thread length, and there are numerous possibilities for disulfide-linked microfibrils and networks. We propose that collagen microfibrils, stabilized by disulfide segment junctions, are a versatile ancestral form from which specialized collagen fibers and networks arose.  相似文献   

18.
Type II procollagen is expressed as two splice forms. One form, type IIB, is synthesized by chondrocytes and is the major extracellular matrix component of cartilage. The other form, type IIA, contains an additional 69 amino acid cysteine-rich domain in the NH2-propeptide and is synthesized by chondrogenic mesenchyme and perichondrium. We have hypothesized that the additional protein domain of type IIA procollagen plays a role in chondrogenesis. The present study was designed to determine the localization of the type IIA NH2-propeptide and its function during chondrogenesis. Immunofluorescence histochemistry using antibodies to three domains of the type IIA procollagen molecule was used to localize the NH2-propeptide, fibrillar domain, and COOH-propeptides of the type IIA procollagen molecule during chondrogenesis in a developing human long bone (stage XXI). Before chondrogenesis, type IIA procollagen was synthesized by chondroprogenitor cells and deposited in the extracellular matrix. Immunoelectron microscopy revealed type IIA procollagen fibrils labeled with antibodies to NH2-propeptide at approximately 70 nm interval suggesting that the NH2-propeptide remains attached to the collagen molecule in the extracellular matrix. As differentiation proceeds, the cells switch synthesis from type IIA to IIB procollagen, and the newly synthesized type IIB collagen displaces the type IIA procollagen into the interterritorial matrix. To initiate studies on the function of type IIA procollagen, binding was tested between recombinant NH2-propeptide and various growth factors known to be involved in chondrogenesis. A solid phase binding assay showed no reaction with bFGF or IGF-1, however, binding was observed with TGF-beta1 and BMP-2, both known to induce endochondral bone formation. BMP-2, but not IGF-1, coimmunoprecipitated with type IIA NH2-propeptide. Recombinant type IIA NH2-propeptide and type IIA procollagen from media coimmunoprecipitated with BMP-2 while recombinant type IIB NH2-propeptide and all other forms of type II procollagens and mature collagen did not react with BMP-2. Taken together, these results suggest that the NH2-propeptide of type IIA procollagen could function in the extracellular matrix distribution of bone morphogenetic proteins in chondrogenic tissue.  相似文献   

19.
Sieron AL  Louneva N  Fertala A 《Cytokine》2002,18(4):214-221
Bone morphogenetic proteins (BMPs) play a critical role in embryo development, organogenesis, and regeneration of damaged tissues. Biological activity of BMPs depends on their local concentration, which is regulated by intracellular enzymatic processing of pro-BMPs, and then the binding of secreted BMPs to antagonizing extracellular proteins. It has been suggested that BMPs interact with structural proteins of the extracellular matrix, but this process is poorly understood. To study interactions of BMPs with fibrillar collagens in detail we expressed recombinant procollagen II variants in which specific domains that correspond to the D-periods were deleted. Subsequently, the procollagen II variants were used in biosensor and immuno-precipitation binding assays to map the regions of procollagen II with a high affinity for the BMP-2. Our data suggest that interaction of BMP-2 with procollagen II is site-specific, and that the high-affinity binding site is located in the D4-period of the collagen triple helix. We hypothesize that the binding of BMP-2 to collagen II reflects a general mechanism of interaction between the fibrillar collagens and morphogens that belong to the transforming growth factor (TGF)-beta superfamily.  相似文献   

20.
Type V collagen is a quantitatively minor fibrillar collagen comprised of different chain compositions in different tissues. The most widely distributed form, an alpha1(V)2alpha2(V) heterotrimer, regulates the physical properties of type I/V heterotypic collagen fibrils via partially processed NH2-terminal globular sequences. A less characterized alpha1(V)alpha2(V)alpha3(V) heterotrimer has a much more limited distribution of expression and unknown function(s). We characterized the biosynthetic processing of pro-alpha1(V)2pro-alpha2(V) procollagen previously and showed it to differ in important ways from biosynthetic processing of the major fibrillar procollagens I-III. Here we have successfully produced recombinant pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers. We use these, and mouse embryo fibroblasts doubly homozygous null for the Bmp1 gene, which encodes the metalloproteinase bone morphogenetic protein-1 (BMP-1), and for a gene encoding the closely related metalloproteinase mammalian Tolloid-like 1, to characterize biosynthetic processing of pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers, thus completing characterization of type V collagen biosynthetic processing. Whereas pro-alpha1(V) and pro-alpha2(V) processing in pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers is similar to that which occurs in pro-alpha1(V)2pro-alpha2(V) heterotrimers, the processing of pro-alpha3(V) by BMP-1 occurs at an unexpected site within NH2-terminal globular sequences. We also demonstrate that, despite similarities in NH2-terminal domain structures, pro-alpha2(V) NH2-terminal globular sequences are not cleaved by ADAMTS-2, the metalloproteinase that cleaves the N-propeptides of the major fibrillar procollagen chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号