首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A collection of 44 cloned 5S DNA units fromTriticum aestivum cv. Chinese Spring were grouped into 12 sequence-types based on sequence similarity and the respective consensus sequences were then produced. The relationship between these 12 consensus sequences (T. aestivum S 1-S 8 andT. aestivum L 1-L 4), together with two clones sequenced byGerlach andDyer, and the 5S DNA consensus sequences from diploidTriticum spp. were then determined by numerical methods. Both phenetic and cladistic analyses were carried out. The following wheat 5S DNA sequences were found to group with respective sequences from diploidTriticum spp.:T. aestivum S 4, S 6 withT. tauschii S;T. aestivum S 3 withT. monococcum S andT. monococcum S-Rus 7;T. aestivum L 1 andT. aestivum L-G&D withT. speltoides L;T. aestivum L 2, L 3 withT. tauschii L;T. aestivum L 4 withT. monococcum L andT. monococcum L-Rus 12. The analyses suggested that 5 out of the 65S Dna loci present in wheat were identified at the sequence level. The locus that could not be identified in this analysis was the5S Dna-B 1 locus. A group ofT. aestivum sequences (T. aestivum S 1, S 7, S 8, S-G&D) were found to be distinct from the other 5S DNA sequences in the data base. The existence of the distinct group of 5S DNA sequences suggests that there is a gap in our current understanding of wheat evolution with respect to the5S Dna loci.  相似文献   

2.
Cultivated barley,Hordeum vulgare L., has a single NADH nitrate reductase (NR) gene while diploid wheat,Triticum monococcum, and cultivated hexaploid wheat,Triticum aestivum L., have two NADH NR genes. To determine whether the NADH NR gene was duplicated since the divergence ofTriticum fromHordeum or was deleted from barley, theT. Monococcum NADH NR gene heme-hinge regions were sequenced and compared with the barley NADH NR gene sequence. Sequence identity and phylogenetic analyses showed that one of theT. Monococcum NADH NR genes is more-closely related to the barley NADH NR gene than to the otherT. Monococcum NADH NR gene. The heme-hinge region of all three NR genes appeared to have evolved at a constant rate. These results suggest that the NADH NR gene duplicated before the divergence ofTriticum andHordeum and that a deletion resulted in the loss of one NADH NR gene from cultivated barley.  相似文献   

3.
The genus Triticum L. includes the major cereal crop, common or bread wheat (hexaploid Triticum aestivum L.), and other important cultivated species. Here, we conducted a phylogenetic analysis of all known wheat species and the closely related Aegilops species. This analysis was based on chloroplast matK gene comparison along with trnL intron sequences of some species. Polyploid wheat species are successfully divided only into two groups – Emmer (sections Dicoccoides and Triticum) and Timopheevii (section Timopheevii). Results reveal strictly maternal plastid inheritance of synthetic wheat amphiploids included in the study. A concordance of chloroplast origin with the definite nuclear genomes of polyploid species that were inherited at the last hybridization events was found. Our analysis suggests that there were two ancestral representatives of Aegilops speltoides Tausch that participated in the speciation of polyploid wheats with B and G genome in their genome composition. However, G genome species are younger in evolution than ones with B genome. B genome-specific PCR primers were developed for amplification of Acc-1 gene.  相似文献   

4.
Twelve different Ty1-copia and Ty3-gypsy group LTR retrotransposons were compared for their usefulness in SSAP marker development in two agriculturally important Vicia species. Three of the retrotransposons, PDR1, Tps19 and Tvf4, yielded useful SSAP marker systems in V. faba, and V. narbonensis. Another, Tvf1 was a good source of SSAP markers in V. narbonensis alone. The optimized SSAP marker systems were applied to the analysis of two diverse Vicia germplasm sets. Two hundred and two polymorphic Tvf1 SSAP markers were scored in 56 V. narbonensis samples and 196 polymorphic markers derived from the other three most useful retrotransposons were scored in a collection of 20 V. faba samples. The marker data were then used to construct phylogenetic trees. The trees for both species tend to show long-branch lengths, with rather little fine structure. Some V. narbonensis accessions cluster by geographical origin but many do not and a given geographical region is often represented by multiple diverse groups in the tree, suggesting a deep and ancient structure for the diversity of V. narbonensis that spans its current geographic range. The tree for the V. faba accessions also shows very limited clustering with geographical origin and no obvious correlation between diversity and morphology-based taxonomic groupings for the species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Alberto Martín Sanz, Susana Gilsanz Gonzalez and Naeem H. Syed have made equal contributions.  相似文献   

5.
Calmodulin is a ubiquitous transducer of calcium signals in eukaryotes. In diploid plant species, several isoforms of calmodulin have been described. Here, we report on the isolation and characterization of calmodulin cDNAs corresponding to 10 genes from hexaploid (bread) wheat (Triticum aestivum). These genes encode three distinct calmodulin isoforms; one isoform is novel in that it lacks a conserved calcium binding site. Based on their nucleotide sequences, the 10 cDNAs were classified into four subfamilies. Using subfamily-specific DNA probes, calmodulin genes were identified and the chromosomal location of each subfamily was determined by Southern analysis of selected aneuploid lines. The data suggest that hexaploid wheat possesses at least 13 calmodulin-related genes. Subfamilies 1 and 2 were both localized to the short arms of homoeologous-group 3 chromosomes; subfamily 2 is located on all three homoeologous short arms (3AS, 3BS and 3DS), whereas subfamily 1 is located only on 3AS and 3BS but not on 3DS. Further analysis revealed thatAegilops tauschii, the presumed diploid donor of the D-genome of hexaploid wheat, lacks a subfamily-1 calmodulin gene homologue, whereas diploid species related to the progenitors of the A and B genomes do contain such genes. Subfamily 3 was localized to the short arm of homoeologous chromosomes 2A, 2B and 2D, and subfamily 4 was mapped to the proximal regions of 4AS, 4BL and 4DL. These findings suggest that the calmodulin genes within each subfamily in hexaploid wheat represent homoeoallelic loci. Furthermore, they also suggest that calmodulin genes diversified into subfamilies before speciation ofTriticum andAegilops diploid species.  相似文献   

6.
7.
Summary Zymogram analysis was used to identify the Aegilops umbellulata chromosomes that carry the structural genes for particular isozymes. Wheat, Aegilops and wheat-Aegilops hybrid derivative lines (which contained identified Aegilops chromosomes) were tested by gel electrophoresis for isozymes of particular enzymes. It was found that Aegilops chromosome A (nomenclature according to G. Kimber 1967) carries a structural gene for 6-phosphogluconate dehydrogenase, Aegilops chromosome B carries structural genes for glucose phosphate isomerase and phosphoglucose mutase, Aegilops chromosome D carries genes for leaf peroxidases, Aegilops chromosome E carries structural genes for endosperm peroxidases, acid phosphatases and leaf esterases, Aegilops chromosome F carries a gene for embryo plus scutellum peroxidases and Aegilops chromosome G carries structural genes for endosperm alkaline phosphatases, leaf alkaline phosphatases and leaf esterases. The results obtained indicate that chromosome B is partially homoeologous of the wheat chromosomes of group 1 and 4, and chromosome E is partially homoeologous of wheat chromosomes of groups 7 and 4. Circumstantial evidence is also provided about the possible association between chromosomes C, D and A of A. umbellulata respectively with chromosomes 5, 2 and 1 of wheat.  相似文献   

8.
Guatteria, Guatteriopsis, Guatteriella andHeteropetalum share the same conspicuous pollen type which is new for theSpermatophyta. It is zonoaperturate with a folded aperture region and an extremely reduced exine. First chromosome counts and karyotype analyses forGuatteriopsis (4 species investigated) andGuatteriella (1 species) are identical with those ofGuatteria (19 species seen): 2n = 28. The genome is characterized by diploidization and partly telocentric chromosomes. Sequentially Giemsa C- and fluorochrome banded chromosomes and interphase nuclei are described. The cuticular folding pattern is distinct forHeteropetalum only. Growth forms and ecology are reported for many species. The evolutionary pattern of theGuatteria group is discussed and compared with other genera and families.  相似文献   

9.
The genomic organization of Triticum timopheevii (2n=28, AtAtGG) was compared with hexaploid wheat T. aestivum (2n=42, AABBDD) by comparative mapping using microsatellites derived from bread wheat. Genetic maps for the two crosses T. timopheevii var. timopheevii × T. timopheevii var. typica and T. timopheevii K-38555×T. militinae were constructed. On the first population, 121 loci were mapped, and on the second population 103 loci. The transferability of the wheat markers to T. timopheevii was generally better for the A genome-specific markers (76–78% produced amplification products; 26 and 29% were polymorphic) than for B genome-specific markers (54% produced amplification products; 14 and 16% were polymorphic). Of the D genome-specific markers, one third produced amplification products in T. timopheevii, but only 5 and 2% were polymorphic in the corresponding mapping populations. The maps constructed confirmed the previously described translocation between chromosome arms 6AtS and 1GS and revealed at least two yet unknown rearrangements on chromosomes 4At and 6At. The presence of other translocations and rearrangements between T. timopheevii and T. aestivum was demonstrated by a variety of markers mapping to nonhomoeologous positions.  相似文献   

10.
A family of three cDNAs, designated TaSUT1A, 1B and 1D, encoding sucrose transporter (SUT) proteins was isolated from a hexaploid wheat (Triticum aestivum) endosperm library. The cDNA sequences are 96% identical but are distinguishable from one another by virtue of a size polymorphism in the 3-untranslated region (UTR). The predicted amino acid sequences are 98% identical and are highly similar to the sucrose transporters from rice, maize and barley. A gene for TaSUT1 was isolated from genomic libraries of Aegilops tauschii (the donor of the D genome of wheat) and the coding sequence found to be identical to that of TaSUT1D cDNA. There is only one copy of each TaSUT1 gene in hexaploid wheat and it is located on chromosome 4. Genomic Southern analysis and PCR analysis across the 3 polymorphic region of hexaploid, tetraploid and progenitor diploid wheat DNAs established that the TaSUT1A gene was present in the putative A-genome progenitor, T. monococcum, and that the TaSUT1B gene was present in the putative B-genome progenitor, T. searsii. All three TaSUT1 genes are expressed at high levels in filling grain, showing a good correlation with the developmental time course of growth. This reinforces the view that in cereals a major role of SUT1 is in the post-phloem sugar transport pathway associated with seed filling.  相似文献   

11.
We present an in-depth study of theTy1-copia group of retrotransposons within the plant genusVicia, which contains species with widely differing genome sizes. We have compared the numbers and sequence heterogeneities of these genetic elements in three diploidVicia species chosen to represent large (V. faba, 1C=13.3 pg), medium (V. melanops, 1C=11.5 pg) and small (V. sativa, 1C=2.3 pg) genomes within the genus. The copy numbers of the retrotransposons are all high but vary greatly, withV. faba containing approximately 106 copies,V. melanops about 1000 copies andV. sativa 5000 copies. The degree of sequence heterogeneity ofTy1-copia group elements correlates with their copy number within each genome, but neither heterogeneity nor copy number are related to the genome size of the host. In situ hybridization to metaphase chromosomes shows that the retrotransposons inV. faba are distributed throughout all chromosomes but are much less abundant in certain heterochromatic regions. These results are discussed in the context of plant retrotransposon evolution.  相似文献   

12.
Twenty enzyme loci were examined in the diploid species ofTriticum andAegilops for allelic variation by starch gel electrophoresis. SectionSitopsis, including the five species,Ae. speltoides, Ae. lingissima, Ae. sharonensis, Ae. bicornis andAe. searsii form a close subgroup withAe. speltoides slightly removed from the others.T. monococcum s. lat., was found to be closest to the species of theSitopsis group.Ae. comosa, Ae. umbellulata andAe. uniaristata form a second subgroup withAe. caudata most closely related to these species.Ae. squarrosa appears almost equally related to all of the species, showing no special affinity for any one species group. Nineteen out of twenty loci examined were polymorphic with a mean of 6.7 alleles per locus. Species could be, for most loci, characterized by the presence of predominant alleles. A conspicious genetic characteristic ofTriticum-Aegilops is the sharing of these predominant alleles between species. Within species variation is characterized by a diffuse distribution of secondary alleles.  相似文献   

13.
The conservation of the linear order (colinearity) of genetic markers along large chromosome segments in wheat and rice is well established, but less is known about the microcolinearity between both genomes at subcentimorgan distances. In this study we focused on the microcolinearity between a 2.6-cM interval flanked by markers Xcdo365 and Xucw65 on wheat chromosome 6B and rice chromosome 2. A previous study has shown that this wheat segment includes the Gpc-6B1 locus, which is responsible for large differences in grain protein content (GPC) and is the target of a positional cloning effort in our laboratories. Twenty-one recombination events between Xcdo365 and Xucw65 were found in a large segregating population (935 gametes) and used to map 17 genes selected from rice chromosome 2 in the wheat genetic map. We found a high level of colinearity between a 2.1-cM region flanked by loci Xucw75 and Xucw67 on wheat chromosome 6B and a 350-kb uninterrupted sequenced region in rice chromosome arm 2S. Colinearity between these two genomes was extended to the region proximal to Xucw67 (eight colinear RFLP markers), but was interrupted distal to Xucw75 (six non-colinear RFLP markers). Analysis of different comparative studies between rice and wheat suggests that microcolinearity is more frequently disrupted in the distal region of the wheat chromosomes. Fortunately, the region encompassing the Gpc-6B1 locus showed an excellent conservation between the two genomes, facilitating the saturation of the target region of the wheat genetic map with molecular markers. These markers were used to map the Gpc-6B1 locus into a 0.3-cM interval flanked by PCR markers Xucw79 and Xucw71, and to identify five candidate genes within the colinear 64-kb region in rice.  相似文献   

14.
The lengths of the A, B, and D genomes of common wheat,Triticum aestivum, were measured from the karyotype. Relative to the B genome, standardized as length 1.000, the lengths of the A and D genomes were 0.835 and 0.722, respectively. The lengths of the chromosome arms in the A and D genomes were then multiplied by the appropriate constants so that the total lengths of each genome also equalled 1.000. These calculations revealed that homoeologous chromosomes in wheat, with a few exceptions, have similar sizes and arm ratios. The arm lengths of the three homoeologues in each homoeologous group were then averaged. These average chromosomes turned out to be remarkably similar, in size and arm ratio, to their homoeologues in the E genome ofElytrigia elongata. This evidence and data on cross-compatibility and morphological characteristics suggested that the genusTriticum is a result of adaptive radiation from the perennial genusElytrigia, specifically from the complex of species possessing the E genome or one closely related to it.  相似文献   

15.
Cornman RS  Arnold ML 《Genetica》2009,135(1):25-38
DNA markers based on transposable-element polymorphisms are potentially useful alternatives to anonymous fragment-length polymorphisms (AFLPs). We developed the retrotransposon sequence-specific amplified polymorphism (retrotransposon SSAP) technique for the angiosperm Iris missouriensis (Iridaceae) in order to evaluate its use in generating population-genetic markers. Our cloning strategy identified two groups of long-terminal repeat retrotransposons of the IRRE family. Primers homologous to conserved regions of these elements generated repeatable and polymorphic markers. In comparison, the AFLP protocol failed to produce useful markers in our hands in this species. To investigate the distribution and evolutionary tempo of the two retrotransposons, we developed a phylogeny of representative species of subgenus Limniris based on chloroplast sequence. Sequences of both groups of retrotransposons were widespread in Limniris, but we also found evidence of substantial sequence and copy-number evolution since the divergence of I. missouriensis from other Limniris species. We corroborated these results with quantitative real-time PCR estimates of relative copy number. Importantly, the geographic structure of retrotransposon SSAP was strikingly different for the two groups of retrotransposons, indicating that different mutational dynamics and/or selective pressures govern their distribution. Although these primers should be useful for population-genetic studies of Iris missouriensis and other Limniris species, our findings reinforce the need for caution in evaluating transposable-element markers used to analyze the relatedness of populations or cultivars, as very different conclusions may be reached depending on the sequence amplified.  相似文献   

16.
17.
18.
A real-time PCR approach was adopted and optimized to estimate and compare, through a relative quantification, the copy number of WIS2-1A and BARE-1 retrotransposons. The aim of this approach was to identify and quantify the presence of these retrotransposons in Triticum and Aegilops species, and to understand better the genome organization of these retroelements. The species were selected to assess and compare the evolution of the different types of genomes between the more recent species such as the diploid Triticum monococcum, tetraploid T. dicoccon and hexaploid T. spelta, and the corresponding genome donors of the ancient diploids Aegilops (Ae. speltoides, Ae. tauschii, Ae. sharonensis and Ae. bicornis) and T. urartu. The results of this study indicated the presence of great variation in copy number both within and among species, and the existence of a non-linear relationship between retrotransposon copy number and ploidy level. For WIS2-1A, as expected, T. monococcum showed the lowest copy number which instead was similar in T. dicoccon and T. spelta; also T. urartu (AA), Ae. speltoides (BB) and Ae. tauschii (DD) showed a higher WIS2-1A copy number. Similar results were observed for BARE-1 retroelements except for Ae. tauschii which as in T. monococcum showed lower retroelements content; a similar content for T. dicoccon and T. urartu, whereas a higher number was found in T. spelta and Ae. speltoides. The results presented here are in accord with previous studies and contribute to unravelling the structure and evolution of polyploidy and repetitive genomes.  相似文献   

19.
Summary The nucleolar organizer activity of the Agropyron elongatum, its amphiploid with hexaploid wheat (Triticum aestivum) and the chromosome addition lines is analyzed by the silver-staining procedure. Four Ag-NORs are observed in A. elongatum corresponding to the chromosomes 6E and 7E. In the amphiploid T. aestivum — A. elongatum, eight Ag-NORs are observed which corresponds the wheat chromosomes 1B and 6B and to the elongatum chromosomes 6E and 7E. Thus, there is codominance in the nucleolar organizer activity of the chromosomes of the two species. However, a partial amphiplasty is detected since less than 8 Ag-NORs (7 up to 4) are observed in some metaphase cells; the chromosomes 6E and 7E are occasionally suppressed by wheat chromosomes. This conclusion is confirmed by the behaviour of the addition lines since only in those corresponding to the chromosomes 6E and 7E are the elongatum chromosomes nucleolar active although occasionally they can be suppressed by wheat chromosomes.  相似文献   

20.
Summary Southern blot hybridization of total DNA to defined mitochondrial DNA sequences provides a sensitive assay for mtDNA variation in the genera of Triticum and Aegilops. A clear distinction between cytoplasms of tetraploid species sharing the AG haploid genome is reported for the first time. The Sitopsis section of the genus Aegilops showed the most extensive intra- and inter-specific variation, whereas no variation could be detected among the cytoplasms of polyploid Triticum species (wheats) sharing the AB haploid genome. Extensive cytoplasmic intraspecific diversity was revealed in Ae. speltoides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号